这个积分的极限为什么分母等价于x^2?
发布网友
发布时间:2024-10-24 12:03
我来回答
共1个回答
热心网友
时间:2024-10-25 03:56
lim(x->0) [f(1-x) +f(1+2x) -2 ] /∫(0->e^(x^2)-1) e^(-u^2) =-1
(0/0)
=>
f(1) +f(1) -2 =0
f(1) =1
lim(x->0) [f(1-x) +f(1+2x) -2 ] /∫(0->e^(x^2)-1) e^(-u^2) =-1
(0/0 分子分母分别求导)
lim(x->0) [-f'(1-x) +2f'(1+2x) ] / { 2x.e^(x^2). e^[-(e^(x^2)-1]^2 } =-1
[1/(2e^4) ].lim(x->0) [-f'(1-x) +2f'(1+2x) ] / x =-1
(0/0)
=>
-f'(1) +2f'(1) = 0
f'(1) =0
[1/(2e^4) ].lim(x->0) [-f'(1-x) +2f'(1+2x) ] / x =-1
(0/0 分子分母分别求导)
[1/(2e^4) ].lim(x->0) [f''(1-x) +4f''(1+2x) ] =-1
[1/(2e^4) ].[ 5f''(1) ] =-1
f''(1) = -2e^4/5 <0
=>
x=1 (max)追问分子分母分别求导的那一步,分母怎么化得直接提2e^4的。。。归根结底就是这一步的问题 求解
追答lim(x->0) e^(x^2) =1
lim(x->0) e^[-(e^(x^2)-1]^2 = e^[(-2)^2] = e^4
lim(x->0) [-f'(1-x) +2f'(1+2x) ] / { 2x.e^(x^2). e^[-(e^(x^2)-1]^2 } =-1
[1/(2e^4) ].lim(x->0) [-f'(1-x) +2f'(1+2x) ] / x =-1