十进制数和十六进制数怎么转换?
发布网友
发布时间:2022-03-22 22:35
我来回答
共13个回答
热心网友
时间:2022-03-23 00:04
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。字母不区分大小写。
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
例如十六进数 2AF5, 转化成10进制的步骤:
用竖式计算:
2AF5换算成10进制:
第0位:
第1位:
第3位:
直接计算就是:
可以看出,所有进制换算成10进制,关键在于各自的权值不同。
扩展资料:
进制转换是人们利用符号来计数的方法。进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指,进位制中每一固定位置对应的单位值。
十进制中的数位排列是这样的:
…… 万 千 百 十 个 十分 百分 千分……
16进制中的数位排列是这样的:
…… ……
参考资料:
百度百科-十六进制至十进制转换
热心网友
时间:2022-03-23 01:22
16进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方…
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
进制转换表:
例:2AF5换算成10进制:
用竖式计算:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2= 2560
第3位: 2 * 16^3 = 8192
-------------------------------------
10997
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
扩展资料:
十六转十的乘法口诀:
一峘一拾六
二峘三拾二
三峘四拾八
四峘六拾四
五峘八拾
六峘九拾六
七峘一百一拾二
八峘一百二拾八
九峘一百四十四
十峘一百六
屲峘一百七拾六
亗峘一百九拾二
岌峘二百零八
岄峘二百二拾四
岪峘二百四
参考资料: 百度百科—十六进制转换
热心网友
时间:2022-03-23 02:57
十六进制数转换十进制数,也是利用权值和开方所得,具体内容给你举例说明:
例:十六进制数2A4F,转换为十进制数为:F*16^0+4*16^1+A*16^2+2*16^3=15+64+2560+8192=10831。
拓展资料:
十六进制(hexadecimal)是计算机中数据的一种表示方法。同我们日常中的十进制表示法不一样。
十六进制数的基数是16,采用的数码是0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。其中A-F分别表示十进制数字10-15。十六进制数的技术规则是"逢十六进一",它的各位的权是以16的N次方标识的。通常,对十六进制数的表示,可以在数字的右下角标注16或H,但在C语言中是在数的前面加数字0和字母X即0X来表示。例如,12AF在C语言中表示为0X12AF。
十六进制数的加减法的进/借位规则为:借一当十六,逢十六进一。 十六进制数同二进制数及十进制数一样,也可以写成展开式的形式。
热心网友
时间:2022-03-23 04:48
4个2进制位为一个16进制数,2进制1111为16进制F,2进制中千位的1=8,百位的1=4,十位的1=2,个位的1=1,将各个位的数作相应转换再相加,的到的数就是10进制数0-15,可轻松转换成16进制。如01011100,可看成是两组2进制数0101和1100,则这个数就是16进制的5C。
10转16:
100以内一点的10转16心算比较快,复杂的用“计算器”算了。10转16用传统的计算方式可以了,就是大于15小于256的10进制数除以16为的值为十位的16进制数,其余数为个位的16进制数,没余数则个位为0。如61的16进制是3D,61除以16得3余13,3作十位数,13转成D为各位数。
16转10:
用相反的道理,将十位数乘以16加上个位数。如5A,将5乘以16得80,加上A的10进制10,结果是90。
热心网友
时间:2022-03-23 06:56
一个数的每一位都有一个权值,例如十进制数2039
它可以表示为:2*10^3+0*10^2+3*10^1+9*10^0
那么任何进制的数都一样,例如16进制数8A30E
它就是8*16^4+10*16^3+3*16^2+0*16^1+14*16^0=566030,算出来的值就是这个数对应的十进制数
又例如k进制数abcdef(这是一个6位数)
它就是a*k^5+b*k^4+c*k^3+d*k^2+e*k^1+f*k^0
这样想就十分简单了
热心网友
时间:2022-03-23 09:21
一.十进制转换十六进制
若十进制数23785转为十六进制,则用 23785/16=1486余............9, 1486/16=92余……14, 92/16=5余………….12,
5/16=0余……………..5,十六进制中,10对应为a、11对应为b、。。。。。。、15对应为f,再将余数倒写为5ce9,则十进制23785=十六进制5ce9。
二.十六进制转换十进制
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方。
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
假设有一个十六进数 2AF5:
用竖式计算: 2AF5换算成10进制:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2 = 2560
第3位: 2 * 16^3 = 8192
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
热心网友
时间:2022-03-23 12:02
■■■■■楼上的刷屏刷的太厉害了吧..■■■■■
十六进制数转换成十进制十分简单
举个例子:AC(十六进制)转换成十进制为
A所在位置为16的1次方再乘以A也就是十进制数的10=16*10=160
C所在位置为16的0次方再乘以C也就是十进制数的12=1*12=12
现在再把那个数再起来就是172了
如果还要往更高位算的话那就是16的三次方喽..只要你明白了这样的算法就搞定了
热心网友
时间:2022-03-23 15:00
用位加权乘,积相加法比较简单。如8FFC035B转换为十进制(最低位是16^0,依次向左):
8FFC035B(16)=8x16^7+Fx16^6+Fx16^5+Cx16^4+0x16^3+3x16^2+5x16^1+Bx16^0
=2147483648+15x16^6+15x16^5+12x16^4+0+768+80+11
=2147483648+251658240+15728640+786432+768+80+11
=2415657819(10)。
也可以用“用10除,反向取余数”法,注意被除数是16进制就是了,如16进制数ABC化为10进制……
ABC(16)÷10 = 112 余 8
112(16)÷10 = 1B 余 4
1B(16)÷10 = 2 余 7
2(16)÷10 = 0 余 2
反向取余数是2748(10)
热心网友
时间:2022-03-23 18:15
16进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
例:2AF5换算成10进制:
用竖式计算:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2= 2560
第3位: 2 * 16^3 = 8192
-------------------------------------
10997
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
热心网友
时间:2022-03-23 21:46
比如16进制的数是12,换成10进制就是(1*16+2=18)。
又比如16进制的数是2a ,换乘10进制就是(2*16+10=42)。
热心网友
时间:2022-03-24 01:34
先转换成十进制数,然后利用十进制数除以16取余(类似十转二),转换成十六进制
热心网友
时间:2022-03-24 05:39
十六进制由0-9,A-F,组成。与10进制的对应关系是:0-9对应0-9;A-F对应10-15;N进制的数可以用0---(N-1)的数表示超过9的用字母A-F。
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
假设有一个十六进数 2AF5
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
也可以用竖式表示:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2 = 2560
第3位: 2 * 16^3 = 8192
-------------------------------------
10997
现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。
假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式:
1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0
热心网友
时间:2022-03-24 10:00
一、 常用数制及其相互转换
在我们的日常生活中计数采用了多种记数制,比如:十进制,六十进制(六十秒为一分,六十分为一小时,即基数为60,运算规则是逢六十进一),……。在计算机中常用到十进制数、二进制数、八进制数、十六进制数等,下面就这几种在计算机中常用的数制来介绍一下。
1.十进制数
我们平时数数采用的是十进制数,这种数据是由十个不同的数字0、1、2、3、4、5、6、7、8、9任意组合构成,其特点是逢十进一。
任何一个十进制数均可拆分成由各位数字与其对应的权的乘积的总和。例如:
?
?
?
这里的10为基数,各位数对应的权是以10为基数的整数次幂。为了和其它的数制区别开来,我们在十进制数的外面加括号,且在其右下方加注10。
2.二进制数
在计算机中,由于其物理特性(只有两种状态:有电、无电)的原因,所以在计算机的物理设备中获取、存储、传递、加工信息时只能采用二进制数。二进制数是由两个数字0、1任意组合构成的,其特点是逢二进一。例如:1001,这里不读一千零一,而是读作:一零零一或幺零零幺。为了与其它的数制的数区别开来,我们在二进制数的外面加括号,且在其右下方加注2,或者在其后标B。
任何一个二进制数亦可拆分成由各位数字与其对应的权的乘积的总和。其整数部分的权由低向高依次是:1、2、4、8、16、32、64、128、……,其小数部分的权由高向低依次是:0.5、0.25、0.125、0.0625、……。
二进制数也有其运算规则:
加法:0+0=0????0+1=1???1+0=1????1+1=10
乘法:0×0=0????0×1=0????1×0=0????1×1=1
二进制数与十进制数如何转换:
(1) 二进制数—→十进制数
对于较小的二进制数:
对于较大的二进制数:
方法1:各位上的数乘权求和??例如:
(101101)2=1×25+0×24+1×23+1×22+0×21+1×20=45
(1100.1101)2=1×23+1×22+0×21+0×20+1×2-1+1×2-2+0×2-3+1×2-4=12.8125
方法2:任何一个二进制数可转化成若干个100…0?的数相加的总和??例如:
(101101)2=(100000)2+(1000)2+(100)2+(1)2
而这种100…00形式的二进制数与十进制数有如下关联:1后有n个0,则这个二进数所对应的十进制数为2n。
所以:(101101)2=(100000)2+(1000)2+(100)2+(1)2=25+23+22+20=45
(2)十进制数—→二进制数
整数部分:整除以2取余法。例如:75
75/2=37…1??37/2=18…1??18/2=9…0??9/2=4…1??4/2=2…0??2/2=1…0???1/2=0…1
将得到的一系列的余数倒过来书写就得到该数所对应的二进制数(1001011)2
小数部分:乘以2取整法。例如:0.7
0.7×2=1.4…1??0.4×2=0.8…0???0.8×2=1.6…1???0.6×2=1.2…1??0.2×2=0.4…0
3.八进制数
八进制数是由0、1、2、3、4、5、6、7、8任意组合构成的,其特点是逢八进一。为了与其它的数制的数区别开来,我们在八进制数的外面加括号,且在其右下方加注8,或者在其后标Q。
八进制数的基数是8,任何一个八进制数亦可拆分成由各位数字与其对应的权的乘积的总和。其整数部分的权由低向高依次是:1、8、82、83、84、85、……,其小数部分的权由高向低依次是:8-1、8-2、8-3、8-4、……。
八进制数与其它数制的转换:
(1)与十进制数的互换
八进制数—→十进制数
十进制数—→八进制数
方法均与二进制数与十进制数互换的方法一样。
(2)与二进制数的互换
八进制数—→二进制数
把八进制数的每一位改成等值的三位二进制数,即“一位变三位”。
例如:56.103Q
解:?5?????6?.??1????0????3
???? ↓????↓???↓???↓???↓??????????????
???? 101??110???001??000??011
所以(56.103)8=(101110.001000011)2
二进制数—→八进制数
把二进制数从小数点开始向两边每三位为一段(不足补0),每段改成等值的一位八进制数即可,即“三位变一位”。
4.十六进制数
十六进制数是由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F任意组合构成的,其特点是逢十六进一。为了与其它的数制的数区别开来,我们在十六进制数的外面加括号,且在其右下方加注16,或者在其后标H。
十六进制数的基数是16,任何一个十六进制数亦可拆分成由各位数字与其对应的权的乘积的总和。其整数部分的权由低向高依次是:1、16、162、163、164、165、……,其小数部分的权由高向低依次是:16-1、16-2、16-3、16-4、……。
十六进制数与其它数制的转换:
(1)与十进制数的互换
十六进制数—→十进制数
十进制数—→十六进制数
方法均与二进制数与十进制数互换的方法一样。
(2)与二进制数的互换
十六进制数—→二进制数
把十六进制数的每一位改成等值的四位二进制数,即“一位变四位”。
例如:(3AD.B8)16
解:?3????A?????D.????B?????8
???? ↓????↓????↓????↓????↓??????????????
???? 0011??1010??1101??1011??1000
所以(3AD.B8)16=(1110101101.10111)2
二进制数—→十六进制数
把二进制数从小数点开始向两边每四位为一段(不足补0),每段改成等值的一位十六进制数即可,即“四位变一位”。
下表中列出了一些数的二、八、十和十六进制形式
二进制数 八进制数 十进制数 十六进制数 二进制数 八进制数 十进制数 十六进制数
0000 0 0 0 1001 11 9 9
0001 1 1 1 1010 12 10 A
0010 2 2 2 1011 13 11 B
0011 3 3 3 1100 14 12 C
0100 4 4 4 1101 15 13 D
0101 5 5 5 1110 16 14 E
0110 6 6 6 1111 17 15 F
0111 7 7 7 10000 20 16 10
1000 10 8 8 10001 21 17 11
??? 二、计算机中数的表示
在计算机中所有的数据、指令以及一些符号等都是用特定的二进制代码表示的。
??? 1.数值数据的表示
我们把一个数在计算机内被表示的二进制形式称为机器数,该数称为这个机器数的真值。机器数有固定的位数,具体是多少位受到所用计算机的*。机器数把其真值的符号数字化,通常是用规定的符号位(一般是最高位)取0或1来分别表示其值的正或负。例如:假设机器数为8位,则其最高位是符号位,那么在整数的表示情况下,对于00101110和10010011,其真值分别为十进制数+46和-19。
机器数常采用原码和补码的形式作为其编码方式。
(1)原码
整数X的原码是指:其符号位的0或1表示X的正或负,其数值部分就是X的绝对值的二进制表示。通常用[X]原表示X的原码。
例如:假设机器数的位数是8,那么:[+17]原=00010001???[-39]原=10100111
注意:由于[+0]原=00000000,[-0]原=10000000,所以数0的原码不唯一,有“正零”和“负零”之分。
(2)反码
在反码的表示中,正数的表示方法与原码相同;负数的反码是把其原码除符号位以外的各位取反(即0变1,1变0)。通常,用[X]反表示X的反码。
例如:[+45]反=[+45]原=00101101??[-32]原=10100000???[-32]反=11011111
(3)补码
在补码的表示中,正数的表示方法与原码相同;负数的补码在在其反码的最低有效位上加1。通常用[X]补表示X的补码。
例如:[+14]补=10100100???[-36]反=11011011????[-36]补=11011100
注意1:数0的补码的表示是唯一的,即[0]补=[+0]补=[-0]补=00000000
注意2:利用公式?[X]补+[±Y]补=[X±Y]补??可以把加法和减法统一成加法。(符号位和其它位上数一样运算,如果符号位上有进位,则把这个进位的1舍去不要,即不考虑“溢出”问题)。
例如:??X=6,Y=2??求X-Y
解:??[X]补=00000110??????[-Y]补=11111110
?????? [X-Y]补=00000100
另:机器数中采用定点或浮点数的方式来表示小数!(略)
??? 2.ASCII码
计算机除了能处理数值外还能处理字符(指字母A、B、…、Z、a、b、…、z,数字0、1、…、9,其它一些可打印显示的符号如:+、-、*、/、<、>、…)。在计算机内部,这些符号也得用二进制代码来表示,目前,在国际上广泛采用的是美国标准信息交换代码(American?Standard?Code?for?Information?Interechang),简称ASCII码。
标准的ASCII码*有128(27)个字符,所以标准的ASCII码采用7位二进制编码。因为其中的字符排列是有序的,其对应的ASCII码也是相连的,所以我们只需要记几个关键字符的ASCII码,其它可以推算。
‘0’——48????‘A’——65??????‘a’——97
注:标准的ASCII码能表示的字符较少,于是在其基础上又设计了一种扩充的ASCII码,采用的是8位二进制编码,可以表示256个字符。
??? 3.BCD码
十进制数在键盘输入和打印、显示输出时往往是将各个数字以ASCII码来表示的。但是在计算机内运算时,是以二进制形式进行的。为了便于转换,设计了一些用二进制编码表示的十进制数,称为二—十进制码,即BCD码(Binary?coded?Decimal)。
BCD码是用四位二进制代码来表示一位十进制数。有多种BCD码:8421码、2421码、余3码、格雷码。
常用BCD码
十进制数字 8421码 2421码 余3码 格雷码
0 0000 0000 0011 0000
1 0001 0001 0100 0001
2 0010 0010 0101 0011
3 0011 0011 0110 0010
4 0100 0100 0110 0010
5 0101 0101 1000 1110
6 0110 0110 1001 1010
7 0111 0111 1010 1000
8 1000 1110 1011 1100
9 1001 1111 1100 0100
注意:BCD码表示的数形式上像二进制数,但不是真正的二进制数。