发布网友 发布时间:2022-03-25 00:57
共3个回答
懂视网 时间:2022-03-25 05:18
二极管具有单方向导电性,二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。
导电体是容易导电的物体,即是能够让电流通过材料;不容易导电的物体叫绝缘体。(并不是能导电的物体叫导体,不能导电的物体叫绝缘体,这是一般人常犯的错误)金属导体里面有自由运动的电子,导电的原因是自由电子半导体随温度其电阻率逐渐变小,导电性能大大提高,导电原因是半导体内的空穴和电子对。在科学及工程上常用利用欧姆来定义某一材料的导电程度。
固体的导电是指固体中的 电子或 离子在 电场作用下的远程迁移,通常以一种类型的电荷载体为主,如:电子导体,以 电子载流子为主体的导电; 离子导电,以离子载流子为主体的导电;混合型导体,其 载流子电子和离子兼而有之。除此以外,有些电现象并不是由于载流子 迁移所引起的,而是电场作用下诱发固体 极化所引起的,例如介电现象和 介电材料等。 我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷,橡胶等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、 铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。在金属中,部分电子可以脱离原子核的束缚,而在金属内部自由移动,这种电子叫做自由电子。金属导电,靠的就是自由电子。
热心网友 时间:2022-03-25 02:26
二极管的特性:
1、正向性
外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值,内电场很快被削弱,特性电流迅速增长,二极管正向导通。
叫做门坎电压或阈值电压,硅管约为0.5V,锗管约为0.1V。硅二极管的正向导通压降约为0.6~0.8V,锗二极管的正向导通压降约为0.2~0.3V。
2、反向性
外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。一般硅管的反向电流比锗管小得多,小功率硅管的反向饱和电流在nA数量级,小功率锗管在μA数量级。温度升高时,半导体受热激发,少数载流子数目增加,反向饱和电流也随之增加。
1)、击穿
外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二极管反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。
二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管因为灯丝的热损耗,效率比晶体二极管低,所以现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。
二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,*发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。
二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。
2)、特性曲线
与PN结一样,二极管具有单向导电性。硅二极管典型伏安特性曲线(图)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律增大,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。
对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧增大,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。
3、反向击穿
1)、齐纳击穿
反向击穿按机理分为齐纳击穿和雪崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。
2)、雪崩击穿
另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加*,都可能造成PN结永久性损坏。
主要参数:
用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:
1、最大整流电流IF
是指二极管长期连续工作时,允许通过的最大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管最大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
2、最高反向工作电压Udrm
加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。
3、反向电流Idrm
反向电流是指二极管在常温(25℃)和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10℃,反向电流增大一倍。例如2AP1型锗二极管,在25℃时反向电流若为250uA,温度升高到35℃,反向电流将上升到500uA,依此类推,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25℃时反向电流仅为5uA,温度升高到75℃时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
4.动态电阻Rd
二极管特性曲线静态工作点Q附近电压的变化与相应电流的变化量之比。
5最高工作频率Fm
Fm是二极管工作的上限频率。因二极管与PN结一样,其结电容由势垒电容组成。所以Fm的值主要取决于PN结结电容的大小。若是超过此值。则单向导电性将受影响。
6,电压温度系数αuz
αuz指温度每升高一摄氏度时的稳定电压的相对变化量。uz为6v左右的稳压二极管的温度稳定性较好。
热心网友 时间:2022-03-25 03:44
1.二极管的主要参数