发布网友 发布时间:2022-03-23 15:30
共1个回答
热心网友 时间:2022-03-23 16:59
摘要你好,数据预处理的方法1、数据清理通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。主要是达到如下目标:格式标准化,异常数据清除,错误纠正,重复数据的清除。2、数据集成数据集成例程将多个数据源中的数据结合起来并统一存储,建立数据仓库的过程实际上就是数据集成。3、数据变换通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。4、数据归约数据挖掘时往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。数据预处理是数据挖掘一个热门的研究方面,毕竟这是由数据预处理的产生背景所决定的--现实世界中的数据几乎都脏数据。咨询记录 · 回答于2021-12-21数据预处理的常用方法有那些,分别如何处理的,列举一些数据预处理的代码实例你好,₣Y2XAEfuV1₳ 这缎,登陆块守,友爱---------2$lM322aEJ7hP$://你好,数据预处理的方法1、数据清理通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。主要是达到如下目标:格式标准化,异常数据清除,错误纠正,重复数据的清除。2、数据集成数据集成例程将多个数据源中的数据结合起来并统一存储,建立数据仓库的过程实际上就是数据集成。3、数据变换通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。4、数据归约数据挖掘时往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。数据预处理是数据挖掘一个热门的研究方面,毕竟这是由数据预处理的产生背景所决定的--现实世界中的数据几乎都脏数据。