数据挖掘是做什么的
发布网友
发布时间:2022-03-23 23:29
我来回答
共6个回答
热心网友
时间:2022-03-24 00:58
<
热心网友
时间:2022-03-24 02:16
数据挖掘又译为资料探勘、数据采矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
是一个用数据发现问题、解决问题的学科。
通常通过对数据的探索、处理、分析或建模实现。
我们可以看到数据挖掘具有以下几个特点:
基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。
非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束 为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。
隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。
新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。
价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是“屠龙之技”,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的 是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导 致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器
热心网友
时间:2022-03-24 03:51
说的最直白的就是从一堆数据中找出有价值的东西,以便用来赚更多的钱。。。
热心网友
时间:2022-03-24 05:42
数据挖掘(Data Mining)的定义是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。
数据挖掘能做以下七种不同事情:
· 分类 (Classification)
· 估计(Estimation)
· 预测(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚类(Clustering)
· 描述和可视化(Description and Visualization)
· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
热心网友
时间:2022-03-24 07:50
主要就是为了完成数据分析的。
热心网友
时间:2022-03-24 10:15
数据挖掘的用处有很多,在这里我只想从技术和应用两个层面来简单谈谈。
1、从技术层面来说,按照数据挖掘产出的知识可以粗分为两大类:描述型挖掘和预测型挖掘。
描述型挖掘是对现有数据的进一步精炼和归纳,从中抽取中更宏观的反映数 据特征的概念描述。举个例子来说,某家银行有几百万客户,数据仓库中存储了每个客户的人口统计信息、账户信息、交易信息、客服联络信息等详细数据。但是银 行不可能清楚地了解每位客户是什么样的客户,客户的消费模式到底是怎样的?这时一般需要把全体客户进行细分,划分为几个客户群,而且这种划分可以保证具有 相似行为、相似价值的客户会被放入同一个群组中。有了这些客户群,银行就能更容易地发现营销机会并制定营销战略。这个例子中所用的挖掘技术是聚类模型,它 就是一种典型的描述型挖掘。
预测型挖掘,顾名思义,就是建立的挖掘模型具备预测能力。这种预测能力可能包括预测哪些客户下个月会流失,哪些客户对促销活动会积极响应,哪些客户的未来价值会成长以及成长多少等等。预测型挖掘常常对企业运营具有更强的指导作用,从而更快地见效。
2、从应用层面来说,数据挖掘可以应用到很多行业中,包括电信、银行、证券、保险、制造、因特网等等。
抛开具体行业的特定应用不谈,在各个行业中一般都会把数据挖掘应用在客户关系管理(CRM)之中。在CRM中的数据挖掘应用,包括客户细分、客户价值分析、客户获取、客户保持、交叉销售和提升销售等等。此外,信用评分、欺诈侦测和文本挖掘等也是常见的应用。