发布网友 发布时间:2022-03-18 03:24
共3个回答
懂视网 时间:2022-03-18 07:45
数学是让很多人都非常头痛的一门学科,有的人语文和英语成绩都非常好,可是数学却经常不及格,拖后腿,这可愁怀了家长吗,们,于是很多家长亲自上阵给孩子们补习数学,可是数学实在是太高深莫测了,不知道方法的家长也觉得十分吃力,比如从1加到100等于多少呢?从1到100足足有一百个数,这可难倒了很多家长,那么一起来看看小编今天的分享吧。
1+2+3...+100=5050
在这里我们可以运用等差数列求和公式,即n*(n+1)/2=100*101/2=5050
而且这个还与著名数学家高斯有一段渊源。
七岁时高斯进了St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:把 1到 100的整数写下来,然后把它们加起来!每当有考试时他们有如下的习惯:第一个做完的就把石板面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:答案在这儿!其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050。老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。
以上就是小编今天的分享了,希望可以帮助到大家。
热心网友 时间:2022-03-18 04:53
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
加法性质
一般来说,在一个集合F上定义一个二元关系“+”,满足:
Ⅰ 交换律:对任意的 a ,b ∈ F ,a + b = b + a ∈ F;
Ⅱ 结合律:对任意的a,b,c∈F,a + (b +c) = (a +b) +c;
Ⅲ 单位元:存在一个元素 0 ∈ F ,满足对任意的 a ∈ F ,a + 0 = 0 + a = a;
Ⅳ 逆元:对任意的 a ∈F ,存在一个元素 -a∈ F ,满足a + (-a) = 0。
“+”称作定义在集合F上的加法。
“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。
100(加数) +(加号) 300(加数) =(等于号) 400(和)
热心网友 时间:2022-03-18 06:11
从1加到100是5050。
运用高斯求和公式或朱世杰求和公式:和=(首项+末项)x项数/2数学表达:1+2+3+4+……+n=(n+1)n/2
得1+2+3+……+100=(1+100)*100/2=5050
扩展资料:
等差数列的其他推导公式:
1、和=(首项+末项)×项数÷2。
2、项数=(末项-首项)÷公差+1。
3、首项=2x和÷项数-末项或末项-公差×(项数-1)。
4、末项=2x和÷项数-首项。
5、末项=首项+(项数-1)×公差。
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。