发布网友 发布时间:2022-03-13 04:58
共1个回答
热心网友 时间:2022-03-13 06:44
“人造卫星”就是环绕地球在空间轨道上运行(至少1圈)的无人航天器。科学家用火箭把它发射到预定的轨道,使之环绕着地球或其他行星运转,以便进行探测或科学研究。并且通常把围绕哪一颗行星运转的人造卫星就称为相应行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。
我们知道,地球对周围的物体有引力的作用,因而抛出的物体要落回地面,并且抛出的初速度越大,物体就会飞得越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远。倘若没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。
资料表明,人造卫星是发射数量最多、用途最广、发展最快的航天器。1957年10月4日,前苏联发*世界上第一颗人造卫星。之后,美国、英国、法国、日本、印度也相继发*人造卫星。中国于1970年4月24日发*“东方红1”号人造卫星,截至2008年年底中国共成功发*近百颗不同类型的人造卫星。除上述国家外,加拿大、意大利、澳大利亚、德国、荷兰、西班牙和印度尼西亚等也在准备自行发射或已经委托别国发*人造卫星。
人造卫星
人造卫星一般由专用系统和保障系统两部分组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器、遥感器、导航设备等。而科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。而保障系统则是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统,其中主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。而对于返回卫星,则还有返回着陆系统。
卫星的结构系统除了构成卫星的外形以外,它还有一个重要的用途,就是要经得起严酷环境条件的考验,起到保护内部的仪器设备的作用。比如说在火箭点火工作的刹那,伴随着震耳欲聋的轰鸣,成吨的燃料喷着长长的火舌从发动机的喷管倾泻而出,这样会产生强大的冲击和振动,并且立刻作用到结构上;此外,当火箭高速飞行时,它的表面和周围大气会产生强烈的摩擦。在摩擦的作用下,火箭表面很快会被加热,我们称之为气动加热。它可以使卫星表面的温度达到几百摄氏度,对卫星非常不利。当返回式卫星返回时,它是以8千米/秒的速度冲向地球,就像流星一样快。由于大气的阻挡,卫星的速度会迅速地减小,同时伴随着运动能量的减少,这些减少的能量几乎全部变成热能。这些热能会使卫星周围气体的温度高达10000℃!卫星结构温度也有2000℃~3000℃!卫星进入太空后,它的运行要经过日照区和阴影区。当卫星运行到日照区时,太阳直接照射在卫星上,会产生达到100℃的高温。而当卫星运行到阴影区时,卫星的温度就很低,最低为-100℃。
所以,为了使卫星能够经受种种的考验,保证它能够正常工作,科学家们首先要求卫星有足够的强度和刚度。那么,什么是卫星结构的强度和刚度呢?科学上给出的强度定义是当卫星的结构在一定的外力作用下,使自身不被破坏的能力。而刚度则是指当结构受到一定的外力作用时,使卫星不产生过大变形的能力。当卫星受到外力的作用时,尽管它的结构没被破坏,但是有很大的变形也是不允许的。
除此之外,我们对卫星的结构要求是非常高的,但是在材料的选取和使用上要求更高,既要求材料的强度高、刚度好,又要求材料的密度小,也就是相同的体积下具有更小的质量。现在的低密度、高强度的非金属复合材料就很好,它在这方面已得到了“重用”,我们常听说的玻璃钢就是其中的一种。
不管是火箭还是卫星,都有众多的电子仪器设备,要想使得这些电子设备正常地运行,就需要充足的能源供给做后盾。因此说,能源系统对卫星而言就像它们的食粮,是必不可少的。卫星上的众多的电子仪器和活动部件,都需要供电后才能工作。
专家指出,与地面能源所不同的是,卫星的“食粮”有更高的标准。具体体现在以下几个方面:
首先,我们要求它能够在真空状态下工作;其次,要求用于产生能源的材料要轻,而且这种材料在相同的质量下,能够激发出更大的能量。
对于低轨道、短寿命的卫星,我们一般多采用化学电源,如银-锌电池、镍-镉电池;或者是选择性能更好的如锂电池、氢—氧燃料电池等。
而对于高轨道、长寿命的卫星,我们一般采用太阳能电池。太阳能电池从太阳取得能量,所以它的能量是源源不断的,并且可使卫星工作几年甚至几十年的时间。
有时我们从电视上能看到像蜻蜓一样伸展着两个大翅膀的卫星,那两个大翅膀可不是用来飞行的,而是太阳能电池的帆板。或许在不远的将来,随着科学技术的不断发展,更为先进的能源会越来越多地被采用,比如核能源就是一个很好的例子。
有趣的是,人造卫星对它的能源系统还挺挑剔的,可不是“吃饱了”就行,不过卫星这是为了工作的需要,所以我们要尽量满足它。那么,卫星对它的“吃食”有哪些要求呢?首先,表现在能源系统要有电池来存储电能。为了减少卫星的重量,一般是直流电源。其次,卫星上不同的仪器需要不同的电压和不同的电流,这就需要把固定电压的直流电进行变换,所以还要有变换器。
另外,要想把电流送到每个仪器,还必须要有电缆来传输,对于大型卫星,如果把卫星的各种电缆线一根根地接起来,能够围绕地球转好几圈呢!
由于太空是一种失重环境,倘若人造卫星在该环境下不加控制的话便会乱翻筋斗,这种情况是绝对不允许的。卫星飞行时有的需要它的天线始终对准地面;有的要求它的工作窗口对准地面,而有的仪器需要始终对准太阳。我们可以简单地设想一下,如果胡乱翻滚那还能工作吗?从广义上讲,对于卫星的控制是多方面的,有姿态控制、轨道控制、工作程序控制和无线电控制等4个方面。下面我们首先看看卫星的姿态控制和轨道控制是如何工作的。
为了防止卫星在飞行中的翻滚,首先要对它的飞行姿态进行控制,使卫星始终保持一种姿态或者在必要的时候改变现有姿态。卫星飞行时保持姿态的标准就是使它的某一个轴始终指向空间的一个特定方向。不管卫星是什么形状,总可以按照不同的方向规定它的3个轴的方向,比如卫星的长度方向规定为纵轴,记为X向,则其他两个横轴就是Y向和Z向。
卫星的姿态控制就是控制卫星的飞行姿态,保持姿态轴的稳定,使它的变化在工作允许的范围内,而一旦超出这个允许的范围,就要进行调整。根据对卫星的不同工作要求,卫星姿态稳定的方法也是不同的,有的卫星使它的一个轴始终定向,指向空间固定方向,而卫星本体围绕这个轴转动来稳定姿态,好像小孩玩的陀螺,一转动起来就有一个轴的方向保持不变,卫星的这种姿态稳定方式称为自旋稳定。产生卫星旋转的动力是在卫星的表面沿圆周方向,也称为切线方向,对称地装上小火箭,当需要时,自动点燃小火箭,用火箭的动力产生力矩,使卫星起旋。我国的“东方红”卫星和初期的通信卫星都是采用自旋稳定的方式。
而有些卫星在飞行时3个轴都要控制,不允许任何一个轴产生超出规定值的转动,这种稳定方式我们称之为卫星的三轴姿态稳定。在卫星的姿态控制中,有时需要它完成规定的动作,也就是按预定的程序绕着某一个轴转过一个角度,这也是控制系统的工作范围。
此外,控制的另一方面的含义就是轨道控制。那什么是轨道控制呢?前面我们已经说过,对于轨道较低的卫星,当它飞行一段时间后,由于大气的阻力,它的轨道高度逐渐降低,这就好像我们在刮风天迎风骑车一样,很吃力,时间长了,其速度就要慢下来一样。卫星与之同理,气体的阻力会使它的速度减慢、高度降低,这时就需要进行控制,给它一定的能量进行加速,使它回到原来的轨道高度,要不然卫星就有坠落的危险。
那卫星的控制系统又是由哪些部分组成的呢?典型的控制系统包括以下几个部分:
(1)敏感器部分。
科学家指出,卫星控制系统的敏感器的作用是用于测量卫星的姿态变化,其中包括卫星沿各个轴的转动角度有多大,是否超出规定的范围,它是向哪个方向转动。
资料显示,敏感器包括如陀螺、地平仪、太阳敏感器、星敏感器等部件;卫星上装有惯性定向陀螺,它始终指向空间的某一方向,当卫星的姿态正确时,卫星的3个轴的指向就正确,和陀螺的指向一致;而当卫星沿任一轴产生了转动而且超出了允许的范围时,陀螺的指向并不变,这样一来,卫星和陀螺之间就产生了姿态的误差,这种姿态的误差就会变成电信号的变化。信号的大小就反映了卫星的姿态变化量。而地平仪和太阳敏感器的道理也相似,只不过一个以地球定位,一个以太阳定位。
(2)变换器部分。
变换器部分的作用是把经过敏感器敏感测量的卫星的姿态角度的变化值变成电信号,经过一系列地处理和放大、比较后把信号送到控制动力部分。变换器部分都是由一些复杂的电子线路组成的。
(3)控制动力部分。
当卫星的姿态产生误差后,当然不止是能够测量它,知道误差的大小和方向,最主要的是能够控制它、纠正它,使它恢复到正确的位置,而这一任务则是由控制动力部分来完成的,有时也称这部分为执行机构。在远离卫星质心的特定部位,对称地装有小发动机的喷管,这些喷管有的沿卫星的纵向安装,有的沿卫星表面的横向安装,它们都与变换器的电子线路相连;其中小发动机的动力有的采用液体燃料,而且可以多次启动;有的采用气体,利用高速的喷气产生动力。
当卫星姿态产生误差时,变换器的电子线路就发出一个控制信号,到达相应的小发动机部分,发动机接到这个信号后就动作,使燃料或气体从发动机的喷管高速喷出,根据反作用原理就产生了推力,控制整个卫星向姿态误差的反方向转动,这样就完成了一次控制动作。所以不难想象,卫星在空中飞行时,一直受到这种控制,只要有姿态误差就进行控制、调整,使卫星始终保持在正确的姿态下飞行。
事实上,卫星的控制方法是多种多样的,上面说的只是其中的一种。此外,还有利用地球的重力场的,称为重力梯度控制;有的利用地球的磁场控制等。
虽然人们都不希望卫星出现故障,但是从国内外的航天史来看,故障总是在所难免的,比如由于卫星设计得不够结实,或者是卫星材料的可靠性差,这些都容易使卫星产生故障。虽然在卫星上天前,科学家们进行了充分的预想,并且设置了不同的对策,但是智者千虑,必有一失,故障往往是难以预料的。
为了对数百千米乃至数千千米之外的卫星下达命令,这便请出了遥控系统。它就像是卫星的指挥官。那么,它是如何做到“指挥有方”的呢?想要指挥,首先要有控制指令。由于控制指令是无线电信号,敌人有时会有意识地进行人为的干扰,使指令不能正确地接收和执行,这就会影响整个工作甚至误大事。
如果控制指令的密码或者频率被别人知道和掌握了,那就更麻烦了,别人实际上就成了卫星的“主人”。如果是返回式的卫星,就可以命令它在什么地方返回,然后回收它。
为此,卫星不是一接收到控制指令就马上执行,而是同一指令地面要发几次。同时,卫星还能区别同一个指令是不是完全一样,如果不一样,卫星可以拒绝执行。那么,一般都有哪些方面需要进行遥控呢?在一般情况下,重要的功能动作需要进行遥控。
卫星起码在数百千米以外的太空飞行,为了可靠和准确地工作,对于至关重要的指令,不但要由卫星自己发出,也同样要由地面的遥控系统发出。
(1)切断故障仪器停止工作。在飞行中,如果有一台仪器出现故障,我们可以由遥控命令关闭它转换到备用仪器工作。
(2)修正卫星的工作时间和轨道参数。发射卫星时,由于运载火箭实际发射的轨道往往偏离原设想轨道,这时为了保证工作的准确性,要按照实际轨道,通过遥控重新注入有关数据。
(3)执行安全指令。对火箭来说,万一在发射后的飞行过程中,由于某种故障偏离正确的飞行路线,可能坠落在人口稠密的城市时,就要通过遥控把它炸毁在空中,以保证安全。
人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,视野广阔,并且不受领土、领空和地理条件*。能迅速与地面进行信息交换,包括地面信息的转发,也可获取地球的大量遥感信息。曾有资料显示,一张地球资源卫星图片所遥感的面积可达几万平方千米。
在卫星轨道高度达到35786千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,大大简化地面站的设备。
人造卫星是个兴旺的家族,如果按用途分,它可分为3大类:科学卫星、技术试验卫星和应用卫星。
(1)科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气、地球辐射带、地球磁层、宇宙线、太阳辐射,并可以观测其他星体等。
卫星轨道示意图
(2)技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。航天技术中有很多新原理、新材料、新仪器,其能否使用必须在天上进行试验;一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用。此外,包括人上天之前必须先进行动物试验等等这些都是技术试验卫星的使命。
(3)应用卫星是直接为人类服务的卫星,它的种类最多、数量最大,其中包括:通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星、截击卫星等等。
我们知道,每一个人造卫星均有其特定的运行轨道,并且卫星轨道与科学家设计的参数值有密切关系,也就是说假如我们精心设计各种参数值,就可以得到许多种卫星轨道。下面我们向大家介绍几种典型的卫星轨道: