发布网友 发布时间:2022-04-19 15:30
共1个回答
热心网友 时间:2023-09-01 22:01
辉光放电,电晕放电,介质阻挡放电,射频放电,滑动电弧放电,射流放电,大气压辉光放电,次大气压辉光放电
辉光放电(GlowDischarge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器内放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的*,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。到2013年止的应用范围仅局限于实验室、灯光照明产品和半导体工业等 。
部分气体辉光放电的颜色 Gas Cathode Layer Negative Glow Positive Column He
Ne(neon)
Ar
Kr
Xe
H2
N2
O2
Air red
yellow
pink
-
-
red-brown
pink
red
pink pink
orange
dark-blue
green
orange-green
thin-blue
blue
yellow-white
blue Red-pink
red-brown
dark-red
blue-purple
white-green
pink
red-yellow
red-yellow
red-yellow 电晕放电(CoronaDischarge)
气体介质在不均匀电场中的局部自持放电。是最常见的一种气体放电形式。在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段 。 电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流,电晕放电可以在大气压下工作,但需要足够高的电压以增加电晕部位的电场。一般在高压和强电场的工作条件下,不容易获得稳定的电晕放电,亦容易产生局部的电弧放电(arc)。为提高稳定性可将反应器做成非对称(asymmetric)的电极形式(如下图所示)。电晕放电反应器的设计主要参考电源的性质而有所不同,有直流电晕放电(DC corona)和脉冲式(pulsed corona)电晕放电。利用电晕放电可以进行静电除尘、污水处理、空气净化等。地面上的树木等尖端物体在大地电场作用下的电晕放电是参与大气电平衡的重要环节。海洋表面溅射水滴上出现的电晕放电可促进海洋中有机物的生成,还可能是地球远古大气中生物前合成氨基酸的有效放电形式之一。针对不同应用目的研究,电晕放电是具有重要意义的技术课题 。
介质阻挡放电(Dielectric Barrier Discharge,DBD)
介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为10~10。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中 。
介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternatingcurrent, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown)最后发生放电。当供给的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供给电压,当两电极间的电场大到足够使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生许多微放电丝(microdischarge)导通在两极之间,同时系统中可明显观察到发光(luminous)的现象此时,电流会随着施加的电压提高而迅速增加 。 在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是无规则分布的,放电通道基本为圆柱状,其半径约0.1~0.3mm,放电持续时间极短,约为10~100ns,但电流密度却可高达0.1~1kA/cm,每个电流细丝就是一个微放电,在介质表面上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出“无丝状”、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。当然,不同的气体环境其放电的颜色是不同的 。 虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20年来的事,而且仅限于对微放电或对整个放电过程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程 。 由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应而形成稳定的原子或分子。因而可利用这些自由基的特性来处理VOCs,在环保方面也有很重要的价值。另外,利用DBD可制成准分子辐射光源,它们能发射窄带辐射,其波长覆盖红外、紫外和可见光等光谱区,且不产生辐射的自吸收,它是一种高效率、高强度的单色光源。在DBD电极结构中,采用管线式的电极结构还可制成臭氧O3发生器。21世纪的人们已越来越重视对DBD的研究与应用 。 物 质 介电系数 绝缘强度(kV/mm) Vacuum
Air
Amber
Bakelite
Fused Quartz
Neoprene
Nylon
Paper
Polyethylene
Polystyrene
Porcelain
Pyranol Oil
Pyrex Glass
Ruby Mica
Silicone Oil
Strontium Titanate
Teflon
Titanium Dioxide
Water (20℃)
Water (25℃) 1.00000
1.00054
2.7
4.8
3.8
6.9
3.4
3.5
2.3
2.6
6.5
4.5
4.5
5.4
2.5
233
2.1
100
80.4
78.5 Infinity
0.8
90
12
8
12
14
14
50
25
4
12
13
160
15
8
60
6
-
- 常见物质的介电系数和绝缘强度
射频低温等离子体放电(RadioFrequency Plasma Discharge)
射频低温等离子体是利用高频高压使电极周围的空气电离而产生的低温等离子体。由于射频低温等离子的放电能量高、放电的范围大,现在已经被应用于材料的表面处理和有毒废物清除和裂解中。射频等离子可以产生线形放电,也可以产生喷射形放电 。
滑动电弧放电(Glide Arc Discharge or PlasmaArc)产生低温等离子体
滑动电弧放电等离子体通常应用于材料的表面处理和有毒废物清除和裂解。下图中的滑动电弧由一对像图中所示的延伸弧形电极构成。电源在两电极上施加高压引起电极间流动的气体在电极最窄部分电击穿。一旦击穿发生电源就以中等电压提供足以产生强力电弧的大电流,电弧在电极的半椭圆形表面上向右膨胀,不断伸长直到不能维持为止。电弧熄灭后重新起弧,周而复始。其视觉观看滑动电弧放电等离子体就像火焰一般,但其平均温度却比较低即使将餐巾纸放在等离子体焰上也不会燃烧。它又被称为“索梯”(Jacog's Ladder)。滑动电弧放电产生的低温等离子体为脉冲喷射,但可以得到比较宽的喷射式低温等离子体炬(plasma torch) 。
射流低温等离子放电(Jet Discharge)
几十年来,等离子体炬(plasma torch)的个工业应用已经众所周知,例如,氩弧焊、空气等离子体切割机和等离子体喷涂等。这些设备中的核心部件通常称为等离子体炬,其等离子体中心温度达数千度,是热等离子体。 近年来,人们为了进行有机材料,例如橡胶表面进行处理,以改善表面附着力,将等离子体炬的技术低温化和小型化,将热弧变为冷弧研制成射流低温等离子表面处理设备,喷*出口温度仅数百度,甚至更低,并且已经开始向家用电器和汽车工业推广应用。有些高技术公司,例如中国的CORONA Lab.将这种技术产品化,可以用于高速在线处理 。 1.大气射流低温等离子表面处理的原理 流经冷弧等离子体射流*的空气气流可以产生包括大量的氧原子在内的氧基活性物质,氧基等离子体照射材料表面,可以使附着于材料表面上的有机污染物C元素的分子分离,并变成二氧化碳后被清除;同时可以提高接触性能,从而可以提高接合强度和可靠性。 2.大气射流低温等离子表面处理的工业应用 a)不锈钢薄板对焊处的焊前处理 不锈钢薄板对焊在工业中应用很普遍,例如太阳能热水器的内桶就是用0.4mm的不锈钢薄板卷成圆筒对焊制成。为了达到焊接要求,必须对焊接处进行必要的清洗。目前的清洗方法是湿法-人工用化学清洗剂擦洗,清洗成本高,有污染,很难实现自动化。 大气射流低温等离子清洗技术是干法,运用于薄板对焊的前处理,可代替传统的人工用化学清洗剂擦拭,降低了清洗成本,可提高焊接质量,减少对环境的污染,可实现焊接区清洗的自动化。 b)塑料板的表面处理 塑料类,例如木塑是可以代用木材的新型材料,但表面油漆相当不易,这就大大*了应用范围。如果用化学方法处理,价格高,污染大。为此,用大气射流低温等离子处理则材料表面会发生明显的变化:颜色略有变浅,反光度降低,呈亚光性;用手触摸可以感觉到表面略有粗糙;使喷漆的附着性能大大增强。 经等离子体处理前后的附着力可以测试。测试方法:用划刀在待测部件表面划出垂直井字结构划痕,用软毛刷轻刷划线表面去掉碎沫。用透明胶带贴于划线上,胶带与样品间应无气泡,保持1~2分钟;以约60度角度恒定速度将胶带撕起。观察划线及正方形的完整度以判断附着力的大小。 c)橡胶制品的处理 橡胶在我们日常生活中大量使用,例如汽车的门封条。它的表面须要上漆或织绒。如果不经过低温等离子处理,则不易粘接。如果用化学清洗,既是离线的,又会污染环境。用在线等离子体处理是理想的解决办法。 d)用于玻璃和金属平板处理 空气等离子体射流可以处理玻璃和金属表面,不但有效地清除了来自于大气中浮游灰尘产生的有机污染物,而且改变了表面的性能且持续性足够长。因而可以提高产品的接合强度。此外,常压等离子体清洗还可以用于有机材料和金属材料表面 。
大气压下辉光放电(APGD)
经过近20年的发展,低气压低温等离子体已取得了很大进展。但由于其运行需抽真空、设备投资大、操作复杂、不适于工业化连续生产,*了它的广泛应用。显然,最适合于工业生产的是大气压下放电产生的等离子体。大气压下的电晕放电和介质阻挡放电目前虽然被广泛地应用于各种无机材料、金属材料和高分子材料的表面处理中,但却不能对各种化纤纺织品、毛纺织品、纤维和无纺布等材料进行表面处理。低气压下的辉光放电虽然可以处理这些材料,但存在成本、处理效率等问题,目前无法规模化应用于纺织品的表面处理。长期以来人们一直在努力实现大气压下的辉光放电(APGD)。1933年德国VonEngel首次报道了研究结果 ,利用冷却的裸电极在大气压氢气和空气中实现了辉光放电,但它很容易过渡到电弧,并且必须在低气压下点燃,即离不开真空系统。1988年,Kanazawa等人报道了在大气压下使用氦气获得了稳定的APGD的研究成果,并通过实验总结出了产生APGD要满足的三个条件:(1)激励源频率需在1kHz以上;(2)需要双介质DBD;(3)必须使用氦气气体。此后,日本的Okazaki、法国的Massines和美国的Roth研究小组分别采用DBD的方法,用不同频率的电源和介质,在一些气体和气体混合物中宣称实现了大气压下“APGD”。1992年,Roth小组在5mm氦气间隙实现了APGD,并声称在几个毫米的空气间隙中也实现了APGD,主要的实验条件为湿度低于15%、气体流速50l/min、频率为3kHz的电源并且和负载阻抗匹配。他们认为“离子捕获”是实现APGD的关键。Roth等人用离子捕获原理解释APGD,即当所用工作电压频率高到半个周期内可在极板之间捕获正离子,又不高到使电子也被捕获时,将在气体间隙中留下空间电荷,它们影响下半个周期放电,使所需放电场强明显降低,有利于产生均匀的APGD。他们在实验室的一台气体放电等离子体实验装置中实现了Ar、He和空气的“APGD”。1993年Okazaki小组利用金属丝网(丝直径0.035mm,325目)电极为PET膜(介质)、频率为50Hz的电源,在1.5mm的气体(氩气、氮气、空气)间隙中做了大量的实验,并宣称实现了大气压辉光放电。根据电流脉冲个数及Lisajous图形(X轴为外加电压,Y轴为放电电荷量)的不同,他们提出了区分辉光放电和丝状放电的方法,即若每个外加电压半周期内仅1个电流脉冲,并且Lisajous图形为两条平行斜线,则为辉光放电。若半周期内多个电流脉冲,并且Lisajous图形为斜平行四边形,则为丝状放电。法国的Massines小组、加拿大的Ra小组和俄罗斯的Golubovskii小组对APGD的形成机理也进行了比较深入的研究工作。Massines小组对氦气和氮气的APGD进行了实验研究和数值模拟 ,除了测量外加电压和放电电流之外,他们用曝光时间仅10ns的ICCD相机拍摄了时间分辨的放电图像,用时空分辨的光谱测量记录了放电等离子体的发射光谱,并结合放电过程的一维数值模拟,他们认为,氮气中的均匀放电仍属于汤森放电,而氦气中均匀放电才是真正意义上的辉光放电,或亚辉光放电。他们还认为,得到大气压下均匀放电的关键是在较低电场下缓慢发展大量的电子雪崩。因此,在放电开始前间隙中必须存在大量的种子电子,而长寿命的亚稳态及其彭宁电离可以提供这些种子电子。根据10ns暴光的ICCD拍摄的放电图像,Ra小组发现,在大气压惰性气体He、Ne、Ar、Krypton的DBD间隙中,可以实现辉光放电。除了辉光放电和丝状放电之外,还存在介于前两者之间的第三种放电模式--柱状放电 。 从上个世纪末,国内许多单位如科罗纳实验室、清华大学、大连理工大学、华北电力大学、西安交通大学、华中科技大学、中科院物理所、河北师范大学等先后开始了对APGD的研究。由于APGD在织物、镀膜、环保、薄膜材料等技术里域有着诱人的工业化应用前景,在大气压下和空气中实现辉光放电产生低温等离子体一直是国内外学者探寻的研究重点和热点。2003年,国家自然科学基金委员会将“大气压辉光放电”列为国家重点研究项目。APGD的研究也取得了一些进展,如He、Ne、Ar、Krypton惰性气体在大气压下基本实现了APGD,空气也已经实现了用眼睛看上去比较均匀的准“APGD”。目前,对APGD的研究结果和认识是仁者见仁,智者见智。APGD的研究方兴未艾,已经受到国内外许多大学和研究机构的广泛重视。由于大气压辉光放电目前还没有一个认可标准,(只要选择一定的介质阻挡装置、频率、功率、气流、湿度等)许多实验所看到的放电现象和辉光放电很相似即出现视觉特征上呈现均匀的“雾状”放电,而看不到丝状放电,但这种放电现象是否属于辉光放电目前还没有共识和定论 。
次大气压下辉光放电(HAPGD)产生低温等离子体
由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和离子的能量可达10eV以上。材料批处理的效率要高于低气压辉光放电10倍以上。 可处理金属、非金属、(碳)纤维、金属纤维、微粒、粉末等 。