示波器如何使用
发布网友
发布时间:2022-03-03 02:38
我来回答
共3个回答
热心网友
时间:2022-03-03 04:07
示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
2.1 荧光屏
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
2.2 示波管和电源系统
1.电源(Power)
示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。
2.辉度(Intensity)
旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。
一般不应太亮,以保护荧光屏。
3.聚焦(Focus)
聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4.标尺亮度(Illuminance)
此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。
2.3 垂直偏转因数和水平偏转因数
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2
热心网友
时间:2022-03-03 05:25
如何正确使用示波器,初学者必知
冰淇淋笑着流泪
2018-09-25 8762人看过
如何正确使用示波器呢?在开始选择示波器之初,你心中已大概有一价格范围。示波器的价格取决于多方面因素,包括带宽、采样率、通道数以及存储深度等。如果你只以价格为依据来购买,最终你有可能买不到你所需要的性能。所以如果仅考虑价格因素,安泰测试建议短期用可以考虑租用一台示波器,预算*的话可以买一台二手示波器也是可以的。
方法
1、确定你需要模拟还是数字示波器?
数字示波器和模拟示波器各有其优缺点。现代技术的发展使数字正确选用示波器的十个步骤示波器功能更强,响应更快而且价格也逐渐降低。这些优势使得模拟示波器很难与先进的数字示波器相匹敌。目前来说,客户几乎都选择的是数字示波器,模拟示波器基本已经OUT了。
2、确定你对带宽的要求
测量交流波形的仪器通常都一频率上限,如果波形的频率在此之上则测量精度会变差。这频率上限就是仪器的带宽。通常用仪器响应降低3bB处的频率来定义,你所需仪器带宽的数值取决于被测信号的特征以及你希望得到的测量精度。示波器有两重类型的宽度,即重复(或模拟)带宽及实时带宽。很多数字示波器提供的模拟带宽比其基本采样率要高。这一点是可能的,如果一信号重复出现,示波器并不一定要在一次完成所有的采集,而可以通过在每—次触发发生时获取波形的一部分,在多次循环触发之后构成显示波形 。(这过程通常很快,以致你不会注意到它的发生),重复带宽指标独立于示波器的采样速率。事实上,这一指标通常用来衡量示波器模拟放大器部分的带宽。实时带宽适用于非重复或单次信号。示波器在一次触发过程中完成数字化,所以实时带宽取决于示波器的采样率,采样率与带宽之间的比值不是固定的。如果示波器有数字重构能力,这比值接近于4:1,如果没有重构,这比值通常是10:1。
3、确定你所需要的通道数
一般来讲,你所需要的通道数取决于被测对象。目前以双通道示波器最为流行。然而对大多数工程师来讲,对于某些应用,四通道示波器更为有用。
下面几点应该予以考虑:你需要在同一触发事件捕获多通道信号吗?如果是这样的话,请选用每个通道可以同时采样或独立A/D变换的示波器。如果你观测的信号是重复信号,那么就不一定要求同时采集了。某些示波器是2+2形式的,也就是说,其中两个通道是全功能的,而另外两个通道是衰减范围受 *的辅助通道。在这种情况下,两个A/D变换器由四个通道共享。辅助通道在你观测数字信号时可以提供额外的灵活性。对于双通道示波器,外触发可能很有用处。它可以用一无需观测的信号作为外触发源,而不占用示波器的输入通道。如果你要进行数字定时测量,要求超过四个通道的示波器时,你不妨考虑使用逻辑分析仪。尽管此时你放弃了测量的垂直分辨率,但你获得了多个通道以及额外的触发及分析能力。
4、确定你所需要的采样速率
对于单次信号测量,最关键的性能指标是采样速率,即示波器对于输入信号进行“快速拍照”的速率。高采样速率可以产生高实时带宽以及高的实时分辨率。大多数示波器生产厂商采用采样速率与实时带宽为4:l(如果采用数字重构技术)或10:1(没有数字重构)的比例来防止出现假波。某些示波器提供了独立控制采样速率的功能,这样你可以同时调节采样速率和屏幕显示的数据量(时基),使二者设置不必互相牵制。这一特征可以使你保持你所希望的时间分辨率来观测波形。
5、确定你所需要的存储深度
你所需要的示波器存储深度取决于要求的总时间测量范围以及要求的时间分辨率。如果你想以高分辨率存储长时间段信号,那么你需要选择深存储示波器。这样,你可以在水平扫描速度低的情况下,采用高采样速率。由此将大大减少出现假波的机会,并且获得更多的波形细节信息。
6、考察评估触发能力
很多通用示波器用户习惯于采用边沿触发。在某些应用场合,如果示波器具有其它触发能力,你将会发现它对你的测量会很有帮助。先进的触发功能可以隔离出你所希望观测的事件。在数字应用领域,使示波器触发在多通道之间的特定模式对解决问题很有用处。此外,状态触发可以用来使模式触发与外时钟沿同步。毛刺触发在正或负毛刺发生的时刻或者一脉冲宽于或窄于设定的宽度。这些特征对故障查错尤其重要,触发在错误发生的时刻,观察前向事件(采用延时或水平位置旋钮)来确定问题产生的原因。如果需要
更高级的逻辑触发功 能,你仍然可以考虑采用逻辑分析仪。电视信号触发可以触发在场以及你需要观测的特定行上。在某些示波器上,该特征是选项功能。
7、评价毛刺捕捉能力
三个重要因素影响示波器的毛刺捕捉能力:更新速率:数字示波器必须首先捕获数据然后进行处理,最后进行显示。示波器在一秒钟内可以完成这三个过程的次数称为更新速率。更新速率快的示波器捕捉偶发毛刺的机会比较高。采用多处理器结构的示波器比传统的单处理器结构示波器具有更快的更新速率,使它更适用于捕捉偶发事件。多处理器结构可以产生与模拟示波器相近的显示吞吐能力和响应速度。
峰值检测能力:大多数数字示波器在低扫速时将丢掉采样点,从而降低了有效采样速率。由此引发了这样一个问题,在设定成快速时基时很容易观察到的窄脉冲在扫速低时消失了。然而对于峰值检测或毛刺检测这一特殊采样模式,在所有的扫描速度下均维持最大采样速率,把每一采样周期获得的最大和最小值记录下来。可以检测到的最小毛刺只与示波器的采样速率有关。
毛刺触发:具有毛刺触发功能的示波器可使你隔离出难以发现的毛刺并且触发在毛刺发生时刻。这一功能可以帮助你发现电路运行过程中发生异常情况的原因。
8、确定你所需要的分析功能
利用自动测量以及示波器内置的分析能力,你可以即容易又省时地完成工作。数字示波器通常具有模拟示波器不可能拥有的顺序测量功能和分析选件。算术运算功能包括有加、减、乘、除、积分和微分。统计测量(最小、最大和平均)可以定量描述测量的不确定性,这在测量噪声特征以及定时容限时是很有价值的。有些数字示波器还可以提供FFT功能。具有—卜述所有先进功能的示波器可能在价格上要高一些,所以你自己应该决定花费额外的钱是否物有所值。你最好还是根据实际应用来选择拥有这些特征的示波器。
9、评价存档能力
大多数数字示波器可以通过GPIB、RS-232或者并行口与PC,打印机或绘图仪相连接。但你应弄清楚可以提供哪一种接口,可与哪种类型打印机相匹配。从激光和喷墨打印机输出的效果比热打印输出的质量要高得多,这一点你应该心中有数。利用带有软盘驱动器或软件包的数字示波器,你可以方便地将波形的图像和波形数据传送至PC机。如果你想在一份报告中包含一幅捕捉到的屏幕图像或者想要把波形数据转换成表格,那么这些特征会节省时间。
热心网友
时间:2022-03-03 07:00
示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
示波器是一种用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。
基本构成
显示电路
显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子*、偏转系统和荧光屏3个部分组成。
(1)电子*
电子*用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。
第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。
(2)偏转系统
示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。
如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。
(3)荧光屏
荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。
示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。
如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。