发布网友 发布时间:2022-04-19 21:19
共1个回答
热心网友 时间:2023-06-27 22:54
针对布-肖模型股价波动假设过严,未考虑股息派发的影响等问题,考克斯、罗斯以及罗宾斯坦等人提出了二项分布期权定价模型(binomial option pricing model-bopm),又称考克斯-罗斯-罗宾斯坦模型〔(1)e〕。
该模型假设:
第一,股价生成的过程是几何随机游走过程(geometric random walk),股票价格服从二项分布。与布-肖模型一样,在bopm模型中,股价的波动彼此独立且具有同样的分布,但这种分布是二项分布,而非对数正态分布。也就是说,把期权的有效期分成n个相等的区间,在每一个区间结束时,股价将上浮或下跌一定的量,从而:
(附图 {图})
令snj代表第n个区间后的股价,其间假定股价上浮了j次,下跌了(n-j)次,则:
(附图 {图})
第二,风险中立(risk-neutral economy)。由于连续交易机会的存在,期权的价格与投资者的风险偏好无关,它之所以等于某一个值,是因为偏离这一数值产生了套利机会,市场力量将使之回到原先的水平。 假设股票现价为s[0],一个区间后买方期权到期,那时股价或者上升为s[11]或者下降为s[10]即,:
(附图 {图})
根据风险中立的假设,任何一种资产都应当具有相同的期望收益率,否则就会发生套利行为。也就是说此时无风险债券、股票及买方期权的将来价值满足如下关系:
(附图 {图})
上式中,q表示的是股票价格上涨的概率,因而期权的价格乃相当于其预期价格的贴现值。 上述分析可以进一步推广到n个区间的买方期权价格的确定。首先,需计算出买方期权价格的预期值,假设在n个区间里,在股价上涨k次前,买方期权仍然是减值期权,内在价值仍为0,而k次到n次之间,它具有内在价值,则:
(附图 {图})
(附图 {图}) 先前的分析没有考虑股息的存在,假定某种股票每股在t时将派发一定量的股息,股息因子为f,除息日与付息日相同,则在除息日股价将会下降相当于股息的金额fs[t]。
(附图 {图})
对于美式期权,则需考虑提前执行的情况:
在t时若提前执行,其价格等于内在的价值;不执行,则可按前面的推导得到相应的价格。最终t时的价格应当是提前执行与不提前执行情况下的最大者。即:
(附图 {图}) 根据欧洲期权的平价关系,可直接从其买方期权导出卖方期权价格,而美国期权则不能。利用上述推导美国买方期权价格的方法,可以同样得到:
(附图 {图})
这就是美国卖方期权的定价公式。从上述bopm模型的推演中可看出其主要特点:
1.影响期权价格的变量主要有基础商品的市价(s),期权协定价格(x),无风险利率(r),股价上升与下降的因子(u,d),以及股息因子(f)及除息次数。事实上u与d描述的是股价的离散度,因而与布-肖模型相比,bopm所考虑的主要因素与前者基本相同,但因为增加了有关股息的讨论,因而在派发股息的期权及美国期权的定价方面,具有优势。
2.根据二项分布的特点,bopm模型中只要对u与d及p作出适当的界定,它就可以回答跳动情况下的期权的定价问题。这是布-肖模型所不能够的。同时,当n达到一定规模后,二项分布趋向于正态分布,只要u、d及p的选择正确,bopm模型会*近布-肖模型。
与布-肖模型一样,二项分布定价模型也被推广到外汇、利率、期货等的期权定价上,受到理论界与实业界的高度重视。
三、对西方期权定价理论的评价
以布莱克-肖莱斯模型和bopm模型为代表的西方期权定价理论,是伴随着期权交易,特别是场内期权交易的扩大与发展而逐渐丰富与成熟起来的。这些理论基本上是以期权交易的实践为背景,并直接服务于这种实践,具有一定的科学价值与借鉴意义。
首先,模型将影响期权价格的因素归纳为基础商品价格、协定价格、期权有效期、基础商品价格离散度以及无风险利率和股息等,并认为期权价格是这些因素的函数,即:
c或p=(s,x,t,σ,γ,d)
在此基础上得到了计算期权价格的公式,具有较高的可操作性。比如在布-肖模型中,s、x及t都可以直接得到,γ亦可以通过相同期限的国库券收益率而求出,因而运用该模型进行估价,只需求出相应的σ值即基础商品的价格离散度即可。实践中,σ值既可通过对历史价格的分析得到,亦可假定未行使的期权的市场价格即为均衡价格,将相应变量代入求得(此时称为隐含的离散度implicit volatility)。因而操作起来比较方便。同时,这种概括是基于期权的内在特点,把它放在统一的资本市场考虑的结果。其分析触及到了期权价格的实质,力图揭示期权价格“应当是”多少,而不是“可能是”多少的问题,因而比早期的计量定价模型向前迈了一大步。
其次,模型具有较强的实践性,对期权交易有一定的指导作用。布-肖模型以及二项分布模型都被编制成了计算机软件,成为投资者分析期权市场的一种有效工具。金融界也根据模型编制成现成的期权价格计算表,使用方便,一目了然,方便了投资者。正如罗伯特·海尔等所编著的《债券期权交易与投资》一书所言:“(布-肖)模型已被证明在基本假设满足的前提下是十分准确的,已成为期权交易中的一种标准工具。”具体来讲,这些模型在实践中的运用主要体现于两方面:1.指导交易。投资者可以借助模型发现市场定价过高或过低的期权,买进定价过低期权,卖出定价过高期权,从中获利。同时,还可依据其评估,制定相应的期权交易策略。此外,从模型中还可以得到一些有益的参数,比如得耳他值(△),反映的是基础商品价格变动一单位所引起的期权价格的变化,这是调整期权头寸进行保值的一个十分有用的指标。此外还有γ值(衡量△值变动的敏感性指标);q值(基础商品价格不变前提下,期权价格对于时间变动的敏感度或弹性大小),值(利率每变动一个百分点所引起的期权价格的变化)等。这些参数对于资产组合的管理与期权策略的调整,具有重要参考价值。2.研究市场行为。可以利用定价模型对市场效率的高低进行考察,这对于深化期权市场的研究也具有一定意义。