请教基于opencv的轮廓提取问题
发布网友
发布时间:2022-04-19 19:29
我来回答
共1个回答
热心网友
时间:2022-05-22 01:31
先灰度化->二值化,弄成二值图,你就会提取了
给你个例子
C/C++ code
#include <stdio.h>
#include "cv.h"
#include "cxcore.h"
#include "highgui.h"
#include <iostream>
using namespace std;
#pragma comment(lib,"cv.lib")
#pragma comment(lib,"cxcore.lib")
#pragma comment(lib,"highgui.lib")
struct Position
{
int x,y;
};
double per[256];// 保存灰度概率
IplImage *FindCountours(IplImage* src,IplImage *pContourImg);
int ImageStretchByHistogram(IplImage *src,IplImage *dst);
IplImage* Hist_Equalization(IplImage *srcimg);
void proBorder(IplImage *src); // 边界的处理
void GetBackImage(IplImage* src,IplImage* src_back);
void Threshold(IplImage *src);
int GetThreshold(double *const prob);
void Getprobability(IplImage *src);
double Eccentricity(IplImage *src);
void main()
{
//IplImage * src = cvLoadImage("C:\\image19\\A634.jpg",-1);//灰度图的方式载入
IplImage * src = cvLoadImage("C:\\image19\\A857.jpg",-1);
IplImage * dst = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,3);
IplImage *src_back = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,src->nChannels);
GetBackImage(src,src_back);
dst = FindCountours(src_back,dst);
cvNamedWindow("test",CV_WINDOW_AUTOSIZE);
cvShowImage("test",dst);
cvWaitKey(0);
cvReleaseImage(&src);
cvReleaseImage(&dst);
}
void GetBackImage(IplImage* src,IplImage* src_back)
{
//cvCvtColor(src,src,CV_RGB2GRAY);//灰度化
IplImage *tmp = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,3);
// 创建结构元素
IplConvKernel *element = cvCreateStructuringElementEx( 2, 2, 0, 0, CV_SHAPE_ELLIPSE,0);
//用该结构对源图象进行数学形态学的开操作后,估计背景亮度
cvErode(src,tmp,element,9);
//使用任意结构元素腐蚀图像
cvDilate(tmp,src_back, element,9);
//使用任意结构元素膨胀图像
}
IplImage *FindCountours(IplImage* src,IplImage *pContourImg)
{
CvMemStorage *storage = cvCreateMemStorage(0); //提取轮廓需要的储存容量为默认KB
CvSeq * pcontour = 0; //提取轮廓的序列指针
IplImage *temp = cvCreateImage(cvGetSize(src),src->depth,1);
//cvSmooth(src,temp,CV_GAUSSIAN,3,1,0);
cvSmooth(src,src,CV_GAUSSIAN,3,1,0);//平滑处理
cvCvtColor(src,temp,CV_RGB2GRAY);//灰度化
Getprobability(temp);
printf("最好的阈值:%d\n",GetThreshold(per));
//Threshold(temp);
proBorder(temp);
cvThreshold(temp,temp,GetThreshold(per),255,CV_THRESH_BINARY_INV);
int contoursNum = 0; // 轮廓数量
//int mode = CV_RETR_LIST;
int mode = CV_RETR_EXTERNAL;// 提取最外层轮廓
contoursNum = cvFindContours(temp,storage,&pcontour,sizeof(CvContour),mode,CV_CHAIN_APPROX_NONE);
// contoursNum = cvFindContours(temp,storage,&pcontour,sizeof(CvContour),CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0));
//二值图, 得到轮廓存储,轮廓指针序列,header_size,提取模式,*近方法
CvScalar externalColor;// 保存颜色值
CvScalar holeColor;
//————–画轮廓—————-//
for (; pcontour != 0; pcontour=pcontour -> h_next)
{
//holeColor=CV_RGB(rand()&255,rand()&255,rand()&255);
//externalColor=CV_RGB(rand()&255,rand()&255,rand()&255);
CvRect r = ((CvContour *)pcontour)->rect;
if(r.height * r.width < 800)
{
holeColor=CV_RGB(0,0,0);
externalColor=CV_RGB(0,0,0);
cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,1,8);
}
else
{
//取得轮廓面积
double contArea = fabs(cvContourArea(pcontour,CV_WHOLE_SEQ));
//取得轮廓长度
double contLenth = cvArcLength(pcontour,CV_WHOLE_SEQ,-1);
// 圆形度
double contcircularity = contLenth * contLenth / contArea;
double pxl =Eccentricity(temp);
cout<<"面积为:"<<contArea<<endl;
cout<<"周长为:"<<contLenth<<endl;
cout<<"圆形度为:"<<contcircularity<<endl;
holeColor=CV_RGB(255,255,255);
externalColor=CV_RGB(255,255,255);
cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,1,8);
}
}
//IplConvKernel *element = cvCreateStructuringElementEx( 2, 2, 0, 0, CV_SHAPE_ELLIPSE,0);
//cvDilate(pContourImg,pContourImg, element,9);
return pContourImg;
}
double Eccentricity(IplImage *src)//偏心率
{
Position pos[4];
int width = src->width;
int height = src->height;
int i,j;
for(i = 0; i < height; i++)
{
for(j = 0; j < width; j++)
{
int pixel = (int)cvGet2D(src,i,j).val[0];
if(pixel != 0)
{
pos[0].x = j;
pos[0].y = i;//
goto s;
}
}
}
s:
for(i = height – 1; i >= 0; i–)
{
for(j = 0; j < width ; j++)
{
int pixel = (int)cvGet2D(src,i,j).val[0];
if(pixel != 0)
{
pos[1].x = j;
pos[1].y = i;//
goto w;
}
}
}
w:
for(i = 0 ; i < width ; i++)
{
for(j = 0;j < height; j++)
{
int pixel = (int)cvGet2D(src,j,i).val[0];
if(pixel != 0)
{
pos[2].x = j;//
pos[2].y = i;
goto e;
}
}
}
e:
for(i = width – 1; i >= 0; i–)
{
for(j = 0 ; j < height ; j++)
{
int pixel = (int)cvGet2D(src,j,i).val[0];
if(pixel != 0)
{
pos[3].x = j;//
pos[3].y = i;
goto f;
}
}
}
f:
int l_dis = abs(pos[0].y – pos[1].y);
int s_dis = abs(pos[2].x – pos[3].x);
int tmp_dis;
if(l_dis > s_dis)
{
printf("偏心率:%f\n",l_dis*1.0/s_dis);
}
else
{
tmp_dis = l_dis;
l_dis = s_dis;
s_dis = tmp_dis;
printf("偏心率:%f\n",l_dis*1.0/s_dis);
}
return 0;
}
void Getprobability(IplImage *src)
{
memset(per,0,sizeof(per));
int width = src->width;
int height = src->height;
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
per[(int)cvGet2D(src,i,j).val[0]]++;
}
}
int PixlNum = width * height;
for(i = 0; i < 256; i++)
per[i] = per[i] / PixlNum;
}
int GetThreshold(double *const prob)
{
int threshold = 0;
double maxf = 0;
for (int crrctThrshld = 1; crrctThrshld < 256 – 1; ++crrctThrshld) {
double W0 = 0, W1 = 0, U0 = 0, U1 = 0;
int i = 0;
for (i = 0; i <= crrctThrshld; ++i) {
U0 += i * prob[i];
W0 += prob[i];
}
for (; i < 256; ++i) {
U1 += i * prob[i];
W1 += prob[i];
}
if (W1 == 0 || W1 == 0)
continue;
U0 /= W0;
U1 /= W1;
double D0 = 0, D1= 0;
for (i = 0; i <= crrctThrshld; ++i)
D0 += pow((i – U0) * prob[i], 2.0);
for (; i < 256; ++i)
D1 += pow((i – U1) * prob[i], 2.0);
D0 /= W0;
D1 /= W1;
double Dw = pow(D0, 2.0) * W0 + pow(D1, 2.0) * W1;
double Db = W0 * W1 * pow((U1 – U0), 2.0);
double f = Db / (Db + Dw);
if (maxf < f) {
maxf = f;
threshold = crrctThrshld;
}
}
return threshold;
}
void proBorder(IplImage *src) // 边界的处理
{
int i,j;
int height = src->height;
int width = src->width;
int N = 100;
for(i = 0; i < N * width; i += width) // i表示向下走左上角
{
for(j = 0; j < N ; j++)
{
int index = i + j;
src->imageData[index] = (char)255;
}
}
int NN = 150;
int sw = width * (height – NN);// 左下角 三角形
int t = 1;
for(i = sw; i < sw + NN * width; i += width,t++)
{
for(j = 0; j < t; j++)
{
int index = i + j;
src->imageData[index] = (char)255;
}
}
int se = (height – NN – 1) * width; // 右下角
t = 0;
for(i = se; i < width * height ; i += width,t++)
{
for(j = 0; j < t; j++)
{
int index = i + j – t;
src->imageData[index] = (char)255;
}
}
int ne = width – NN; // 右上角 三角形剪切
t = 0;
for(i = ne; i < NN * width; i +=width,t++)
{
for(j = 0; j < NN – t; j++)
{
int index = i + j + t;
src->imageData[index] = (char)255;
}
}
}
void Threshold(IplImage *src)
{
int width = src->width;
int height = src->height;
float minpixel = cvGet2D(src,0,0).val[0];
float maxpixel = cvGet2D(src,0,0).val[0];
CvScalar s;
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
s = cvGet2D(src,i,j);
if(s.val[0] > maxpixel)
maxpixel = s.val[0];
if(s.val[0] < minpixel)
minpixel = s.val[0];
}
}
float firstgrey = (maxpixel + minpixel) / 2;
printf("%f\n",firstgrey);
float lastgrey;
float sum1 = 0,sum2 = 0;
int num1 = 0,num2 = 0;
int result = 0;