已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2...
发布网友
发布时间:2024-10-24 17:46
我来回答
共1个回答
热心网友
时间:2024-11-06 16:38
(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=1Sn=1n(n+2)=12(1n?1n+2),
∴Tn=12[(1?13)+(12?14)+(13?15)+…(1n?2?1n)+(1n?1?1n+1)+(1n?1n+2)]
=12(1+12?1n+1?1n+2)
=9n2+15n4(n+1)(n+2)
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
3+λ2,9+λ4,23+λ8成等差数列,
即2×9+λ4=3+λ2+23+λ8,
解得λ=1,此时
cn+1+12n+1?cn+12n=cn+1=1?2(cn+1)2×2n
=cn+1?2cn?12×2n=1+2n?12×2n=12,
数列{cn+12n}是一个等差数列,
∴λ=1.