发布网友 发布时间:2022-03-27 03:59
共3个回答
懂视网 时间:2022-03-27 08:21
数据管理发展的三个阶段是:
1、人工管理阶段
20世纪50年代中期以前,计算机主要用于科学计算,这一阶段数据管理的主要特征是:数据不保存。由于当时计算机主要用于科学计算,一般不需要将数据长期保存,只是在计算某一课题时将数据输入,用完就撤走。不仅对用户数据如此处置,对系统软件有时也是这样。应用程序管理数据。数据需要由应用程序自己设计、说明和管理,没有相应的软件系统负责数据的管理工作。数据不共享。数据时面向应用程序的,一组数据只能对应一个程序,因此程序与程序之间有大量的冗余。数据不具有独立性。数据的逻辑结构或物理结构发生变化后,必须对应用程序做相应的修改,这就加重了程序员的负担。
2、文件系统阶段
20世纪50年代后期到60年代中期,这时硬件方面已经有了磁盘、磁鼓等直接存取存储设备;软件方面,操作系统中已经有了专门的数据管理软件,一般称为文件系统;处理方式上不仅有了批处理,而且能够联机实时处理。用文件系统管理数据具有如下特点:数据可以长期保存。由于大量用于数据处理,数据需要长期保留在外存上反复进行查询、修改、插入和删除等操作。由文件系统管理数据。同时,文件系统也存在着一些缺点,其中主要的是数据共享性差,冗余度大。在文件系统中,一个文件基本上对应于一个应用程序,即文件仍然是面向应用的。当不同的应用程序具有部分相同的数据时,也必须建立各自的文件,而不能共享相同的数据,因此数据冗余度大,浪费存储空间。同时,由于相同数据的重复存储、各自管理,容易造成数据的不一致性,给数据的修改和维护带来了困难。
3、数据库系统阶段
20世纪60年代后期以来,计算机管理的对象规模越来越大,应用范围有越来越广泛,数据量急剧增长,同时多种应用、多种语言互相覆盖地共享数据集合的要求越来越强烈,数据库技术边应运而生,出现了同意管理数据的专门软件系统——数据库管理系统。用数据库系统来管理数据比文件系统具有明显的优点,从文件系统到数据库系统,标志着数据库管理技术的飞跃。反洗黑钱(AML)中的客户信息计划制定规则,企业必须详尽地了解他们的客户。销售、营销和金融部门的有效运作都必须有准确和最新的客户数据。
热心网友 时间:2022-03-27 05:29
数据治理分为四个阶段:
第一阶段,梳理企业信息,构建企业的数据资产库。首先要清楚企业的数据模型、数据关系,对企业资产形成业务视图、技术视图等针对不同用户视角的展示。
第二阶段,建立管理流程,落地数据标准,提升数据质量。从企业角度梳理质量问题,紧抓标准落地。
第三阶段,直接为用户提供价值。本阶段依赖于前两个阶段的建设,为用户提供方便的获取数据的途径。
第四阶段,为企业提供数据价值。通过多种手段对多种来源的数据进行分析,形成企业知识图谱,体现数据的深层价值。
通过这4个阶段的建设,建立起全企业的数据质量管控平台,以用户为中心,由用户使用数据并通过用户的使用优化数据质量,既达到了数据治理的目标,也最大限度的发挥了数据的价值。
数据治理方案:
有关数据治理的问题并不能在企业的单一部门得到解决。这需要IT与业务部门进行协作,而且必须始终如一地进行协作,以改善数据的可靠性和质量,从而为关键业务方案提供支持,并确保遵守法规。
Informatica能够提供企业级数据治理解决方案,该解决方案可以在本地或云中使用,在传统数据或大数据中均有使用案例,可以满足业务和IT部门的需求。
Informatica可提供功能齐全而又稳健可靠的数据治理解决方案,具备交付可信、安全的数据和启动成功的元数据管理方案所需的全部精确功能。
Informatica Axon提供端到端智能数据治理解决方案,以整体、协作的方法将员工、流程和系统流畅融合,从而实现战略业务成果。Axon Data Governance作为协作中心,为成功实施数据治理计划提供支持。
热心网友 时间:2022-03-27 06:47
数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。
根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。
1.理:梳理业务流程,规划数据资源
对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?
这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。
2.采:ETL采集、去重、脱敏、转换、关联、去除异常值
前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。
3.存:大数据高性能存储及管理
这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。
4.用:即时查询、报表监控、智能分析、模型预测
数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询、分析、监控做铺垫。
这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立、业务问题的分析,甚至是模型的预测。