发布网友 发布时间:2022-04-19 12:17
共2个回答
热心网友 时间:2023-10-24 22:20
求函数解析式的几种方法及题型如下:
待定系数法、配凑法、换元法、代入法、构造方程组法、赋值法、递推法。
解析式表示函数与自变量之间的一种对应关系,是函数与自变量之间建立联系的桥梁,由已知条件求函数的解析式,是函数部分的一个常见题型,它不仅能深化函数的概念,还常常联系着一些重要解题思维方法和技巧,同样也是高考常考的题型之一。
函数的介绍如下:
函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。
热心网友 时间:2023-10-24 22:20
要求一个函数的解析式,通常需要使用待定系数法或换元法等方法。以下是一些常见的方法: