首页

文章

关于数学中的十字交叉法

发布网友 发布时间:2022-04-19 10:07

我来回答

5个回答

热心网友 时间:2023-08-13 00:07

 十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把χ×2+7χ+12进行因式分解. .   上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .   又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).   讲解:   x^2-3x+2=如下:   x 1   ╳   x 2   左边x乘x=x^2   右边-1乘-2=2   中间-1乘x+(-2)乘x(对角)=-3x   上边的【x+(-1)】乘下边的【x+(-2)】   就等于(x-1)*(x-2)   x^2-3x+2=(x-1)*(x-2)例题 例1  把2x^2-7x+3分解因式.   分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分   别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.   分解二次项系数(只取正因数):   2=1×2=2×1;   分解常数项:   3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:   1 1   ╳   2 3   1×3+2×1   =5   1 3   ╳   2 1   1×1+2×3   =7   1 -1   ╳   2 -3   1×(-3)+2×(-1)   =-5   1 -3   ╳   2 -1   1×(-1)+2×(-3)   =-7   经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.   解 2x^2-7x+3=(x-3)(2x-1).   一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:   a1 c1   ╳   a2 c2   a1c2+a2c1   按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即   a^2+bx+c=(a1x+c1)(a2x+c2).   像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法. 例2  把6x^2-7x-5分解因式.   分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种   2 1   ╳   3 -5   2×(-5)+3×1=-7   是正确的,因此原多项式可以用十字相乘法分解因式.   解 6x^2-7x-5=(2x+1)(3x-5)   指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.   对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是   1 -3   ╳   1 5   1×5+1×(-3)=2   所以x^2+2x-15=(x-3)(x+5). 例3  把5x^2+6xy-8y^2分解因式.   分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即   1 2   ╳   5 -4   1×(-4)+5×2=6   解 5x^2+6xy-8y^2=(x+2y)(5x-4y).   指出:原式分解为两个关于x,y的一次式. 例4  把(x-y)(2x-2y-3)-2分解因式.   分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.   问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?   答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.   解 (x-y)(2x-2y-3)-2   =(x-y)[2(x-y)-3]-2   =2(x-y) ^2-3(x-y)-2   1 -2   ╳   2 1   1×1+2×(-2)=-3   =[(x-y)-2][2(x-y)+1]   =(x-y-2)(2x-2y+1).   指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法. 例5  x^2+2x-15   分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)   (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。   =(x-3)(x+5)   总结:①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)   ②kx^2+mx+n型的式子的因式分解   如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么   kx^2+mx+n=(ax+b)(cx+d)   a b   ╳   c d 编辑本段通俗方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写   1 1   ╳   二次项系数 常数项   若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)   需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)   a b   ╳   c d   第一次a=1 b=1 c=二次项系数÷a d=常数项÷b   第二次a=1 b=2 c=二次项系数÷a d=常数项÷b   第三次a=2 b=1 c=二次项系数÷a d=常数项÷b   第四次a=2 b=2 c=二次项系数÷a d=常数项÷b   第五次a=2 b=3 c=二次项系数÷a d=常数项÷b   第六次a=3 b=2 c=二次项系数÷a d=常数项÷b   第七次a=3 b=3 c=二次项系数÷a d=常数项÷b   ......   依此类推   直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)   例解:   2x^2+7x+6   第一次:   1 1   ╳   2 6   1X6+2X1=8 8>7 不成立 继续试   第二次   1 2   ╳   2 3   1X3+2X2=7 所以 分解后为:(x+2)(2x+3) 编辑本段十字相乘法(解决两者之间的比例问题)原理  </B>一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。   AX+B(1-X)=C   X=(C-B)/(A-B)   1-X=(A-C)/(A-B)   因此:X∶(1-X)=(C-B)∶(A-C)   上面的计算过程可以抽象为:   A ………C-B   ……C   B……… A-C   这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰 十字相乘法使用时的注意  第一点:用来解决两者之间的比例问题。   第二点:得出的比例关系是基数的比例关系。   第三点:总均值放*,对角线上,大数减小数,结果放在对角线上。 例题  </B>某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?   十字相乘法   解:去年毕业生一共7500人,7650÷(1+2%)=7500人。   本科生:-2%………8%   …………………2%   研究生:10%……… -4%   本科生∶研究生=8%∶(-4%)=-2∶1。   去年的本科生:7500×2/3=5000   今年的本科生:5000×0.98=4900   答:这所高校今年毕业的本科生有4900人。 编辑本段3.十字相乘法解一元二次方程  例1 把2x^2-7x+3分解因式.   分析:先 分解二次项系数,   分别写在十字交叉线的左上角和左下角,   再分解常数项,   分别写在十字交叉线的右上角和右下角,   然后交叉相乘,   求代数和,使其等于一次项系数.   分解二次项系数(只取正因数):   2=1×2=2×1;   分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:   11╳23 1×3+2×1=5   13╳21 1×1+2×3=7   1-1╳2 -3 1×(-3)+2×(-1) =-5   1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7   经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.   解 2x^2-7x+3=(x-3)(2x-1).   一般地,对于二次三项式ax^2+bx+c(a≠0),   如果二次项系数a可以分解成两个因数之积,   即a=a1a2,   常数项c可以分解成两个因数之积,   即c=c1c2,把a1,a2,c1,c2,   排列如下:   a1c1 ╳ a2c2   a1c2+a2c1   按斜线交叉相乘,再相加,得到a1c2+a2c1,   若它正好等于二次三项式ax2+bx+c的一次项系数b,   即a1c2+a2c1=b,   那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,   即 ax2+bx+c=(a1x+c1)(a2x+c2).   例2 把6x^2-7x-5分解因式.   分析:按照例1的方法,   分解二次项系数6及常数项-5,   把它们分别排列,   可有8种不同的排列方法,   其中的一种 21╳3-5 2×(-5)+3×1=-7   是正确的,因此原多项式可以用十字相乘法分解因式.   解 6x^2-7x-5=(2x+1)(3x-5)   指出:通过例1和例2可以看到,   运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,   往往要经过多次观察,   才能确定是否可以用十字相乘法分解因式.   对于二次项系数是1的二次三项式,   也可以用十字相乘法分解因式,   这时只需考虑如何把常数项分解因数.   例如把x^2+2x-15分解因式,   十字相乘法是1-3╳ 15 1×5+1×(-3)=2   所以x^2+2x-15=(x-3)(x+5).   例3 把5x^2+6xy-8y^2分解因式.   分析:这个多项式可以看作是关于x的二次三项式,   把-8y^2看作常数项,   在分解二次项及常数项系数时,   只需分解5与-8,用十字交叉线分解后,   经过观察,选取合适的一组,   即 12╳ 5-4 1×(-4)+5×2=6   解 5x^2+6xy-8y^2=(x+2y)(5x-4y).   指出:原式分解为两个关于x,y的一次式.   例4 把(x-y)(2x-2y-3)-2分解因式.   分析:这个多项式是两个因式之积与另一个因数之差的形式,   只有先进行多项式的乘法运算,   把变形后的多项式再因式分解.   问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?   答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.   解 (x-y)(2x-2y-3)-2   =(x-y)[2(x-y)-3]-2   =2(x-y) ^2-3(x-y)-2   1-2╳ 21   1×1+2×(-2)=-3   =[(x-y)-2][2(x-y)+1]   =(x-y-2)(2x-2y+1).   指出:把(x-y)看作一个整体进行因式分解,   这又是运用了数学中的“整体”思想方法.例5 x^2+2x-15   分析:常数项(-15)<0,可分解成异号两数的积,   可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),   其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5)   总结:①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;   常数项是两个数的积;一次项系数是常数项的两个因数的和.   因此,可以直接将某些二次项的系数是1的二次三项式因式分解:   x^2+(p+q)x+pq=(x+p)(x+q)   ②kx^2+mx+n型的式子的因式分解   如果能够分解成k=ac,n=bd,且有ad+bc=m 时,   那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d   (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0   (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0   (1)解:(x+3)(x-6)=-8 化简整理得   x^2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x^2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-3/2是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x^2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=5/2, x2=-10/3 是原方程的解。   (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。   例题x^2-x-2=0   解:(x+1)(x-2)=0   ∴x+1=0或x-2=0   ∴x1=-1,x2=2 词条图册更多图册扩展阅读: 1 .十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1?a2,把常数项c分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。2 .例:x2+2x-153 .分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。4 .=(x-3)(x+5)

热心网友 时间:2023-08-13 00:07

十字交叉法,理解透了,其实并不难

热心网友 时间:2023-08-13 00:08

如:X*X-10X+21=(X-3)(X-7)。这里(-3)*(-7)=21。(-3)+(-7)=-10。2x*x-5x-3=(x-3)(2x+1).二次项系数2=1*2。一次项系数-5=1*(+1)+2*(-3)。常数项-3=(-3)*(+1)。

热心网友 时间:2023-08-13 00:08

abx�0�5+(ad+bc)x+cd=e一次项系数用十字相乘求的a c b d对角相乘并相加即一次项系数为 ad+bc

热心网友 时间:2023-08-13 00:09

那个叫十字相乘吧
ups快递客服电话24小时 贷款记录在征信保留几年? 安徽徽商城有限公司公司简介 安徽省徽商集团新能源股份有限公司基本情况 安徽省徽商集团有限公司经营理念 2019哈尔滨煤气费怎么有税? 快手删除的作品如何恢复 体育理念体育理念 有关体育的格言和理念 什么是体育理念 万里挑一算彩礼还是见面礼 绿萝扦插多少天后发芽 绿萝扦插多久发芽 扦插绿萝多久发芽 炖牛排骨的做法和配料 网络诈骗定罪标准揭秘 “流水不争先”是什么意思? mc中钻石装备怎么做 为什么我的MC里的钻石块是这样的?我想要那种。是不是版本的问题?如果是... 带“偷儿”的诗句 “君不见巴丘古城如培塿”的出处是哪里 带“奈何”的诗句大全(229句) 里翁行()拼音版、注音及读音 带“不虑”的诗句 “鲁肃当年万人守”的出处是哪里 无尘防尘棚 进出口报关流程,越详细越好。谢谢大家指教。 双线桥不是看化合价升多少就标多少的吗?为什么CL2+2KI=2KCL+I2中I失... 出师表高锰酸钾有画面了吗 2021年幼儿园新学期致家长一封信 电脑屏幕一条黑线怎么办? 销售代理商销售代理商的特点 商业代理商业代理的特征 如何看微信有没有开通微众银行 为什么微众没有开户 微众银行怎么开户 微众银行APP开户流程是什么? 唐古拉山海拔唐古拉山海拔是多少 怎么看待取消跳广场舞的人的退休金 如何选购新鲜的蓝田水柿? 恭城水柿柿树作用 创维洗衣机使用教程 创维全自动洗衣机怎么使用 自动开门器 狗羊属相婚姻相配吗 3岁的小孩不会说话怎么办 3岁孩子不会说话,应该挂什么科? 3岁小孩不会说话正常吗 鹿茸炖乌鸡怎么做? 新型冠状肺炎吃什么药可以预防 冰箱上电后一直响 食品生产许可证编号开头为“ G”。 404 Not Found 分数比较大小的方法中有一种叫交叉相乘法,原理是什么? 关于交叉相乘(十字相乘) 十字交叉法:A/B=(r-b)/(a-r)里面的字母代表什么意思了 数学十字交叉相乘的例子 化学比例式怎么计算,我学习很差 等号两端的分子和分母分别交叉相乘,积相等 为什么交叉相乘能比较分数的大小? 为什么百分比要化成分数呢? 404 Not Found 八上数学,像这样的一道题,不用最简公分母去分母,用交叉相乘的话检验时要代入哪个式子呢? 交叉相乘是什么??有什么用??怎样用交叉相乘解答?? 为什么两个相等的分式(分式方程)两边可以相乘 十字交叉法具体怎么讲?在化学中怎么用? 把比例写成分数形式,等号两边的分子和分母分别交叉相乘,积相等吗?为什么? 为什么交叉相乘积相等?方法解释,要全,快快快! 冻豆腐该怎么做啊 冻豆腐怎么做 怎样做冻豆腐? 冻豆腐是怎么做的 什么是十字相乘法? 两个分数相等一个分数分母有X时怎样计算X 电脑上安装完固态硬盘还需要再安装机械硬盘吗? 种植君子兰时常见的病虫害有哪些?该如何预防? 请问君子兰叶片发黄有黑点什么病,怎么治疗? 君子兰有哪些主要病虫害 种植君子兰时常见的病虫害有哪些?该如何预防? 君子兰叶子上有黄斑是得什么病了? 君子兰的病虫害防治有哪些? 君子兰的叶尖干枯是什么原因? 君子兰常见病虫害如何防治? 君子兰日酌病害有图片吗 君子兰有哪些常见病害? 君子兰盆景的病虫害要怎样防治? 我的君子兰最近开的很漂亮就是发现叶子有几片发黄,(附图)是否有病虫害?怎样防治?求答!!! 君子兰一般会有什么病虫害 请问行家,君子兰出现这个叶子发白了是怎么回事? 君子兰的种植高手怎么对付常见的君子兰病害,你知道么 我家君子兰叶尖总是坏死是怎么回事? 君子兰叶子上有白点。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com