首页

文章

急求!!!谁能帮我找一下有关于勾股定理嘚验证方法 图文并茂 详细一些

发布网友 发布时间:2022-04-19 09:58

我来回答

3个回答

热心网友 时间:2023-10-24 00:46

Inongtupian 勾股定理的证明方法
山东 马永庆
1.(传说中毕达哥拉斯的证明)

图1 图2

如图所示,作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .

2.(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图2所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. 四边形ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .

3.(赵爽证明)
以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状. ABCD是一个边长为c的正方形,它的面积等于c2. EFGH是一个边长为b―a的正方形,它的面积等于 .

∴ .

∴ .

图3 图4

4.(Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. 则 ΔDEC是一个等腰直角三角形,它的面积等于 . ABCD是一个直角梯形,它的面积等于 .
∴ ∴ .

5.(马永庆证明方法1)
对任意的符合条件的直角三角形绕其锐角顶点旋转90°得图5,该图是旋转90°得到的,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt⊿BAE和Rt⊿BFE的面积之和,所以:
S正方形ACFD=S⊿BAE+S⊿BFE
即: .
整理:
∴a2+b2=c2.

图5 图6

6.(马永庆证明方法2)
对任意的符合条件的两个全等的Rt⊿BEA和Rt⊿ACD拼成图6(此图也可以看成Rt⊿BEA绕其直角顶点顺时针旋转90°,再向下平移得到)。一方面,四边形ABCD的面积等于⊿ABC和Rt⊿ACD的面积之和,另一方面,四边形ABCD的面积等于Rt⊿ABD和⊿BCD的面积之和,所以:S⊿ABC+S⊿ACD=S⊿ABD+S⊿BCD
即: .
整理:

∴a2+b2=c2.

刻卜勒 (Kepler)曾说:“毕氏定理与黄金分割,是几何学的两大宝藏。”
在台湾的毕氏定理知识网上,详细地介绍了有关于毕氏定理(即勾股定理)的几种证明方法:

7.面积分割法

把原来的两个小正方形,切几刀剪再重新组合成另一个大正方形,疑?这不就是毕氏定理的证明?不需藉助任何文字与符号,让我们来比比看,看谁切的又少块又漂亮?

5块 5块 5块 5块

6块 7块 7块 8块

8块 9块

8.乾坤大挪移

拿把剪刀,切割两个小正方形,也可以巧妙地组成另一个大正方形!
毕氏定理透过旋转或平移的方式,不需代数的计算,证明一目了然,可谓漂亮的无言证明!

9.勾股定理是数学中最重要的定理之一。也许在数学中还找不到这样一个定理,其证明方法之多能够超过勾股定理。它有四百多种证明!卢米斯(Loomis)在他的《毕达哥拉斯定理》一书的第二版中,收集了这个定理的37O种证明并对它们进行了分类。

关于这个定理,虽然号称毕达哥拉斯定理,但人们在遗留下来的古希腊手稿或译文中并没有找到毕达哥拉斯本人及其学派的有关证明,所以人们只能对他可能用的方法进行一些揣测。有据可查的最早证明见于欧几里得的《几何原本》(公元前3世纪)之中。欧几里得用几何的方法,作出了一个巧妙的证明,有兴趣的读者不妨查阅一下。

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化简后便可得: a2+b2=c2
亦即:
c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有所发展。

10. 印度的数学家兼天文学家婆什迦罗,也给出了与赵爽相同的几何图形。但是婆什迦罗在画出这个图形之后,并没有进一步解释和证明,只是说:“正好!”婆什迦罗还给出了这个定理的另外一个证明,即画出斜边上的高,由图中给出的两个相似三角形,我们有
c/b=b/m和c/a=a/n

cm=b2和cn=a2
相加便得:
a 2 +b2=c(m+n)=c2

勾股的证明

中国的数学家刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。刘徽对这组公式进行了严格的论证。这是迄今为止用于勾股数的最完美的表达形式之一。

勾股趣事
汉朝的数学家赵君卿,在注释《周髀算经》时,附了一个图来证明勾股定理。这个证明是四百多种勾股定理的说明中最简单和最巧妙的。您能想出赵老先生是怎样证明这个定理的吗?
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的、

各具特色的证明方法
Inongtupian 勾股定理的证明方法
山东 马永庆
1.(传说中毕达哥拉斯的证明)

图1 图2

如图所示,作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .

2.(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图2所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. 四边形ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .

3.(赵爽证明)
以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状. ABCD是一个边长为c的正方形,它的面积等于c2. EFGH是一个边长为b―a的正方形,它的面积等于 .

∴ .

∴ .

图3 图4

4.(Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. 则 ΔDEC是一个等腰直角三角形,它的面积等于 . ABCD是一个直角梯形,它的面积等于 .
∴ ∴ .

5.(马永庆证明方法1)
对任意的符合条件的直角三角形绕其锐角顶点旋转90°得图5,该图是旋转90°得到的,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt⊿BAE和Rt⊿BFE的面积之和,所以:
S正方形ACFD=S⊿BAE+S⊿BFE
即: .
整理:
∴a2+b2=c2.

图5 图6

6.(马永庆证明方法2)
对任意的符合条件的两个全等的Rt⊿BEA和Rt⊿ACD拼成图6(此图也可以看成Rt⊿BEA绕其直角顶点顺时针旋转90°,再向下平移得到)。一方面,四边形ABCD的面积等于⊿ABC和Rt⊿ACD的面积之和,另一方面,四边形ABCD的面积等于Rt⊿ABD和⊿BCD的面积之和,所以:S⊿ABC+S⊿ACD=S⊿ABD+S⊿BCD
即: .
整理:

∴a2+b2=c2.

刻卜勒 (Kepler)曾说:“毕氏定理与黄金分割,是几何学的两大宝藏。”
在台湾的毕氏定理知识网上,详细地介绍了有关于毕氏定理(即勾股定理)的几种证明方法:

7.面积分割法

把原来的两个小正方形,切几刀剪再重新组合成另一个大正方形,疑?这不就是毕氏定理的证明?不需藉助任何文字与符号,让我们来比比看,看谁切的又少块又漂亮?

5块 5块 5块 5块

6块 7块 7块 8块

8块 9块

热心网友 时间:2023-10-24 00:47

http://www.huangrong.org/gougu/page22.html
图片有些小,你先另存为,再放大
内容很不错

热心网友 时间:2023-10-24 00:47

打开这个网页看看吧~~!

参考资料:http://www.it.com.cn/f/e/0410/12/jhhb89.jpg

土地入股的定义 ups快递客服电话24小时 贷款记录在征信保留几年? 安徽徽商城有限公司公司简介 安徽省徽商集团新能源股份有限公司基本情况 安徽省徽商集团有限公司经营理念 2019哈尔滨煤气费怎么有税? 快手删除的作品如何恢复 体育理念体育理念 有关体育的格言和理念 什么是体育理念 万里挑一算彩礼还是见面礼 绿萝扦插多少天后发芽 绿萝扦插多久发芽 扦插绿萝多久发芽 炖牛排骨的做法和配料 网络诈骗定罪标准揭秘 “流水不争先”是什么意思? mc中钻石装备怎么做 为什么我的MC里的钻石块是这样的?我想要那种。是不是版本的问题?如果是... 带“偷儿”的诗句 “君不见巴丘古城如培塿”的出处是哪里 带“奈何”的诗句大全(229句) 里翁行()拼音版、注音及读音 带“不虑”的诗句 “鲁肃当年万人守”的出处是哪里 无尘防尘棚 进出口报关流程,越详细越好。谢谢大家指教。 双线桥不是看化合价升多少就标多少的吗?为什么CL2+2KI=2KCL+I2中I失... 出师表高锰酸钾有画面了吗 2021年幼儿园新学期致家长一封信 电脑屏幕一条黑线怎么办? 销售代理商销售代理商的特点 商业代理商业代理的特征 如何看微信有没有开通微众银行 为什么微众没有开户 微众银行怎么开户 微众银行APP开户流程是什么? 唐古拉山海拔唐古拉山海拔是多少 怎么看待取消跳广场舞的人的退休金 如何选购新鲜的蓝田水柿? 恭城水柿柿树作用 创维洗衣机使用教程 创维全自动洗衣机怎么使用 自动开门器 狗羊属相婚姻相配吗 3岁的小孩不会说话怎么办 3岁孩子不会说话,应该挂什么科? 3岁小孩不会说话正常吗 鹿茸炖乌鸡怎么做? 新型冠状肺炎吃什么药可以预防 冰箱上电后一直响 用Excel做一个表格,有日期,补货数量,剩余数量,进货数量,库存数量,并且可以自动计算剩余量的 寒假越多越好日记100字内大全 仓库物料物料卡上进销存如何设置自动计算剩余数量? 请问有赞美山里的老师的诗,句子吗?在线等候~ 怎么根据客户名称在匹配对应的订单选择excel 关于读书节的人生格言 平均分后剩下不够分的数是什么?带有什么?的除法就是有余数的除法 华软软件怎样找到保存文件 WPS怎么设置自动库存剩余数量? 暑假日记100字 404 Not Found WPS怎么设置剩余库存数量 想学习炒股 以前从未接触过 excel如何通过筛选获得剩余数量 仙剑奇侠传四镇妖篇怎么修理主基地? 军事名言及其含义 怎么统计库存剩余的数量 如何使Excel表在表2中输入的数据在表一中直接减去,并在表一中显示剩余数量? a50指数含有哪些股票 半年的剩余数量 Excel 设置完有效性下拉菜单后,怎么知道剩余数量 关于暑假生活的作文 N64到底游戏有几款 孟浩然和李白的诗 读书的乐趣作文500 连词成段 CF用GP买黄金AK 聊城商务通会员怎么办理? 此iPhone无法确定电池健康状况怎么回事? 为什么苹果手机不显示电池健康? 苹果手机更换电池后无法显示电池健康? 苹果手机换电池后为什么不显示健康度? 苹果手机电池是原装的为什么显示电池的健康信息不可用? 苹果手机看不了电池健康 iphone11pormax为什么看不了电池健康 苹果手机换电池后不显示电池健康是怎么回事? 404 Not Found 苹果手机换电池之后都不会显示电池健康吗 此iPhone无法确定电池健康状况怎么回事 苹果8p看不了电池健康
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com