发布网友 发布时间:2022-03-25 11:22
共5个回答
懂视网 时间:2022-03-25 15:43
大数据处理流程可以概括为四步:
1、收集数据。
原始数据种类多样,格式、位置、存储、时效性等迥异。数据收集从异构数据源中收集数据并转换成相应的格式方便处理。
2、数据存储。
收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。
3、数据变形。
原始数据需要变形与增强之后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。
4、数据分析。
通过整理好的数据分析5W,帮助企业决策。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
热心网友 时间:2022-03-25 12:51
数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。
根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。
1.理:梳理业务流程,规划数据资源
对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?
这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。
2.采:ETL采集、去重、脱敏、转换、关联、去除异常值
前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。
3.存:大数据高性能存储及管理
这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。
4.用:即时查询、报表监控、智能分析、模型预测
数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询、分析、监控做铺垫。
这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立、业务问题的分析,甚至是模型的预测。
热心网友 时间:2022-03-25 14:09
处理大数据的四个环节:
收集:原始数据种类多样,格式、位置、存储、时效性等迥异。数据收集从异构数据源中收集数据并转换成相应的格式方便处理。
存储:收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。
变形:原始数据需要变形与增强之后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。
分析:通过整理好的数据分析what happened、why it happened、what is happening和what will happen,帮助企业决策。
热心网友 时间:2022-03-25 15:44
首先是大数据的收集了,有足够多的数据,才能进行下一步的工作,这是至关重要的。然后就是大数据入库了,开始数据的分析和处理,得住最有价值的数据,能达到转换直接产生效益的,这个是最终的目标。柠檬学院大数据。热心网友 时间:2022-03-25 17:35
生活在数据裸奔的时代,普通人在喊着如何保护自己的隐私数据,黑心人在策划着如何出售个人信息,而有心人则在思考如何处理大数据,数据的处理分几个步骤,全部完成之后才能获得大智慧。