这题二阶连续偏导数这么求,步骤详细!!!谢谢
发布网友
发布时间:2022-04-20 05:08
我来回答
共1个回答
热心网友
时间:2023-08-31 09:14
解:
分析:根据链式法则即可求出!
奖励够,呵呵,以下详细给出!
∂z/∂x
=∂[y²f(xy,e^x)]/∂x
=[∂y²f(xy,e^x)/∂(xy)]·[∂(xy)/∂x]+[∂y²f(xy,e^x)/∂(e^x)]·[∂(e^x)/∂x]
=y²f'1·y+y²f'2·(e^x)
=y³f'1+y²(e^x)f'2
其中:f'1=f'1(xy,e^x),f'2=f'2(xy,e^x)
∂z/∂y
=∂[y²f(xy,e^x)]/∂y
=2yf(xy,e^x)+y²·{∂[f(xy,e^x)]/∂y}
=2yf(xy,e^x)+y²·{∂[f(xy,e^x)]/∂(xy) · ∂(xy)/∂y+ ∂[f(xy,e^x)]/∂(e^x) · ∂(e^x)/∂y}
=2yf(xy,e^x)+y²·(f'1·x+f'2·0)
=2yf(xy,e^x)+xy²f'1
∂²z/∂x∂y
=∂[y³f'1+y²(e^x)f'2]/∂y
=3y²f'1+y³·(∂f'1//∂y)+2y(e^x)f'2+y²(e^x)·(∂f'2/∂y)
=3y²f'1+y³·(f''11·x+f'12·0)+2y(e^x)f'2+y²(e^x)·(f''21·x+f''22·0)
=3y²f'1+y³xf''11+2y(e^x)f'2+y²x(e^x)f''21
∂²z/∂y∂x
=∂[2yf(xy,e^x)+xy²f'1]/∂x
=2y·[f'1·y+f'2·(e^x)]+y²f'1+xy²·[f''11·y+f''12·(e^x)]
=2y²f'1+2y(e^x)f'2+y²f'1+y³xf''11+xy²(e^x)f''12
=3y²f'1+y³xf''11+2y(e^x)f'2+y²x(e^x)f''12
根据题意,存在连续二阶偏导数,因此:f''12=f''21
因此,显然:
∂²z/∂x∂y = ∂²z/∂y∂x