发布网友 发布时间:2022-04-20 04:44
共3个回答
热心网友 时间:2023-09-17 18:07
惹X~N(p,k^2)的正态分布,则Z=(X-p)/k~N(0,1)的标准正态分布,即统计量减期望值后除以方差。
假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}
y=kx+b直线,它不一定过原点的,但是通过变换就可以了:大Y=y-b;大X=kx;===>大Y=大X
y=a*b乘积,通过变换就可以变成加法运算:Ln(y)=Lna+Lnb
y=ax²+bx+c通过变换就可以变成标准形式:y=a(x+b/(2a))²+(c-b²/(4a))
参数含义:
正态分布有两个参数,即期望(均数)μ和标准差σ,σ2为方差。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
以上内容参考:百度百科-正态分布
热心网友 时间:2023-09-17 18:07
惹X~N(p,k^2)的正态分布,则Z=(X-p)/k~N(0,1)的标准正态分布,即统计量减期望值后除以方差。
假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}
(注:F(y)为Y的分布函数,Fx(x)为X的分布函数)
扩展资料
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
热心网友 时间:2023-09-17 18:08
惹X~N(p,k^2)的正态分布,则Z=(X-p)/k~N(0,1)的标准正态分布.