发布网友 发布时间:2022-04-20 03:46
共2个回答
热心网友 时间:2023-05-15 03:50
线性规划模型的对偶性,对线性规划模型理论、求解有着很重要的意义。特别在应用上,线性规划对偶问题的最优解,就是资源的影子价格,它对于线性规划模型的经济分析,用于对经济管理工作的指导起了极为重要的作用。
市场价格是已知的,而影子价格则与资源的利用情况有关,利用的好,影子价格就高,反之亦然。影子价格是一种边际价格(对偶变量在经济上表示原问题第i种资源的边际价值) 。
影子价格又是一种机会成本。当市场价大于影子价格,卖出资源;当市场价小于影子价格,买入资源,组织生产。影子价格说明了不同资源对总的经济效益产生的影响,因此对企业经营管理提供一些有价值的信息。
扩展资料
对偶理论则广泛应用于经济分析中。例如,在经济均衡的分析中,可以通过设计优化模型,运用对偶理论和模型体系研究市场均衡及其实现均衡所需要的基本条件。
对偶原理在现代数学特别是几何学、代数学、拓扑学等学科中有着广泛的应用,对于推动数学的发展起着很好的作用。
举例来讲,在范畴论中,借助于对偶变换(对偶化),由始对象便可得终对象、由单态射得满态射、由核得上核、由积得上积;在同调代数中,由正向极限得反向极限、由*模得投射模、由*包得投射包、由投射分解(维数)得*分解(维数)、由复形得上复形、由双复形得上双复形、由同调得上同调等。
参考资料来源:百度百科-对偶
参考资料来源:百度百科-对偶问题
热心网友 时间:2023-05-15 03:51
从经济学的角度来说,对偶变量反映的是对应的原变量的边际效应,即每增加一单位的原变量使目标函数变化的值。
当原变量在目标函数取得最优解时没有用完的情况下,原变量的增加不会改变目标函数的值,此时原变量的边际效应为0,即对偶变量为0,这就是强对偶理论。
在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为max{yb|yA≤c}。当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。
所谓满足对偶可行性,即指其检验数满足最优性条件。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
扩展资料:
设线性规划问题中P问题:min f = c'x ,Ax≥b ,且c'≥0;D问题:max g = y'b, y'A≤c', 且y'≥0。问题 P和问题D互为对偶问题。其特点如下:目标函数的目标互为相反(max,min);目标函数的系数是另一个约束条件右端的向量;约束系数矩阵是另一个的约束系数矩阵的转置;约束方程的个数与另一个的变量的个数相等。
如果两个三角形的对应顶点的连线相会于一点,则这两个三角形的对应边的交点必定在同一直线上。
(如果两个三角形的对应边的交点在同一直线上,则这两个三角形的对应顶点的连线必定相会于一点。)
一个六边形的六个顶点在一条二次曲线上,当且仅当,该三对对边的交点在一条线上。
(一个六边形的六条边切一条二次曲线,当且仅当,联该三对顶点的线交于一点。)
参考资料来源:百度百科-对偶