发布网友 发布时间:2022-04-20 03:34
共2个回答
热心网友 时间:2022-07-13 02:43
常用等价无穷小公式=1-cosx。
等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。
无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
热心网友 时间:2022-07-13 02:43
付费内容限时免费查看回答稍等等价无穷小的公式:
前提条件:当x→0时:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~(1/2)*(x^2)~secx-1
(6)(a^x)-1~x*lna ((a^x-1)/x~lna)
(7)(e^x)-1~x
(8)ln(1+x)~x
(9)(1+Bx)^a-1~aBx
(10)[(1+x)^1/n]-1~(1/n)*x
(11)loga(1+x)~x/lna
(12)(1+x)^a-1~ax(a≠0)
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:
(1)被代换的量,在取极限的时候极限值为0;
(2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小量的性质:
(1)有限个无穷小量之和仍是无穷小量。
(2)有限个无穷小量之积仍是无穷小量。
(3)有界函数与无穷小量之积为无穷小量。
(4)特别地,常数和无穷小量的乘积也为无穷小量。
(5)恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。