发布网友 发布时间:2022-04-20 01:08
共5个回答
热心网友 时间:2023-07-10 02:53
数据可视化指的是,通过商业智能BI以图形化手段为基础,将复杂、抽象和难以理解的数据用图表进行表达,清晰有效地传达信息。数据可视化是商业智能BI数据分析的延伸,分析人员借助统计分析方法,将数据转化为信息,然后进行可视化展现。
经过数据可视化处理后,复杂的数据分析报告就转化为了商业智能BI中简洁明了的可视化报表,让企业中财务、生产、运营、销售等不同部门不同职务的员工,都能通过数据可视化获取信息,促使企业更好地发展。
最后,分析人员还可以借助商业智能BI,分别制作PC、移动、大屏等不同终端的可视化报表,形成管理驾驶舱、业务分析、企业状况、核心指标、监控预警等不同风格、功能的数据可视化,让数据分析深入企业内核,以数据为核心驱动企业健康发展。
数据可视化工具
1、可视化工具的优点就是更加轻量化,可以通过模板完成简单图表的制作。可视化工具也可以细分为两种,一种是免费和收费并行,这种可视化工具一般会有水印、功能、导入导出等方面的*,付费解锁全功能。
另一种就是开源的可视化工具,一般可以免费使用全部功能,也能制作复杂的数据可视化报表,但是通常需要编写代码来制作可视化图表,对使用者的IT技术要求比较高。
2、商业智能BI功能比较完善,有丰富的组件模板,是一套完整的由数据仓库、查询报表、数据分析、数据可视化等组成的数据类技术解决方案。商业智能BI可以直连数据库,将不同来源数据储存到数据仓库,也拥有ETL和数据模型等数据处理能力,对数据以指标、标签的形式进行分类分级。
在商业智能BI中,数据可视化能分别为PC、移动端、大屏制作可视化报表,只需拖拉拽就能完成数据可视化分析,制作可视化报表,还拥有详细的用户权限设置功能保护数据安全。
热心网友 时间:2023-07-10 02:54
数据可视化研究的是,如何将数据转化成为交互的图形或图像等,以视觉可以感受的方式表达,增强人的认知能力,达到发现、解释、分析、探索、决策和学习的目的。
“数据可视化(Data Visualization)和信息可视化(Infographics)是两个相近的专业领域名词。狭义上的数据可视化指的是数据用统计图表方式呈现,而信息可视化则是将非数字的信息进行可视化。前者用于传递信息,后者用于表现抽象或复杂的概念、技术和信息。而广义上的数据可视化则是数据可视化、信息可视化以及科学可视化等等多个领域的统称。”
——《数据可视化之美》
广义的数据可视化涉及信息技术、自然科学、统计分析、图形学、交互、地理信息等多种学科。
科学可视化(Scientific Visualization)、信息可视化(Information Visualization)和可视分析学(VisualAnalytics)三个学科方向通常被看成可视化的三个主要分支。这三个分支整合在一起形成的新学科“数据可视化”,是可视化研究领域的新起点。”
数据可视化过程可以分为下面几个步骤:
定义要解决问题
确定要展示的数据和数据结构
确定要展示的数据的维度(字段)
确定使用的图表类型
确定图表的交互
定义问题
首先明确数据可视化是要让用户看懂数据,理解数据。所以开始数据可视化前一定要定义通要解决的问题。例如:我想看过去两周销售额的变化,是增长了还是下跌了,什么原因导致的?你可以从 趋势、对比、分布、流程、时序、空间、关联性等角度来定义自己要解决的问题。
2.确定要展示的数据
进行数据可视化首先要有数据,由于画布大小的*,过量的数据不能够在直接显示出来,所以要确定展示的数据:
我要展示的数据是否已经加工好,是否存在空值?
是列表数据还是树形数据?
数据的规模有多大?
是否要对数据进行聚合,是否要分层展示数据?
如何加载到页面,是否需要在前端对数据处理?
3. 确定要显示的数据维度
进行可视化时要对字段进行选择,选择不同的字段在后面环节中选择适合的图表类型也不同。
4. 确定使用的图表类型
有非常多的图表类型可以使用,但是要根据要解决的问题、数据的结构、选择的数据维度来确定要显示的图表类型。
热心网友 时间:2023-07-10 02:54
顾名思义,数据可视化就是将数据转换成图或表等,以一种更直观的方式展现和呈现数据,让读者能“一眼看懂”你想表达的信息。通过“可视化”的方式,复杂的数据通过图形化的手段进行有效表达,准确高效、简洁全面地传递某种信息,甚至我们帮助发现某种规律和特征,挖掘数据背后的价值。热心网友 时间:2023-07-10 02:55
数据可视化通俗来讲是将数据变成图表,以数据为工具,以可视化为手段,目的是描述探索真实的世界。现在数据可视化正是火热期,不妨去学学。推荐我个人使用的可视化工具吧,迪赛智慧数,可以去使用看看很容易就上手的。热心网友 时间:2023-07-10 02:56
最核心的要点,就是解释数据、进行信息传递、压缩数据信息、突出整体观点。在分析过程中,通过比较数据的大小、差异、分布,让其轻松呈现。