发布网友 发布时间:2022-04-20 00:42
共2个回答
热心网友 时间:2023-07-11 00:53
设单位面积质量1,
得到此均质圆弧质量为:(α/(2π))*πa^2=(1/2)αa^2
显然,质心应在扇形的对称轴上,设其与圆心的距离为X
则:((1/2)αa^2)X=∫∫(a*cosα)*da*adα=∫∫(cosα)a^2dadα
(a从0到a,α从-α/2到α/2)
((1/2)αa^2)X=∫∫(cosα)a^2dadα=∫(cosα)dα ∫a^2da =2sin(α/2)*(1/3)a^3
=(2/3)sin(α/2)a^3
X=(4a/3)sin(α/2)
一个点的位置,可以用一组数(有序数组)来描述。例如,在平面上,可以作两条相交的直线l1与l2;过平面上任一点M,作两条直线分别与l1、l2平行且与l2、l1交于P2、P1两点;这样,M点就可以用它沿平行于l1、l2的方向到l2、l1的有向距离P2M、P1M来表示。这两个有向距离,称为点M的坐标,两条直线称为坐标轴,坐标轴的交点称为原点,当两直线相互垂直时,就是平面直角坐标系。
在空间,可以作三个相交平面,空间中任一点M可以用沿着过这点且平行于两相交平面交线之一,到另一平面的有向距离来表示。这三个有向距离,就是空间中一点M的坐标,三个平面称为坐标面,任何两个坐标面的交线,就是坐标轴。三条坐标轴的交点,就是原点。
热心网友 时间:2023-07-11 00:54
上面这个是重心(二重积分范畴)所问的是质心(定积分概念)真是答非所问